Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical investigation on the plasma acceleration of the inductive pulsed plasma thruster

Cheng Yu-Guo Xia Guang-Qing

Citation:

Numerical investigation on the plasma acceleration of the inductive pulsed plasma thruster

Cheng Yu-Guo, Xia Guang-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The pulsed inductive discharge ionizes the neutral gas and accelerates the plasma efficiently, and is accompanied by complicated phenomena during the discharge process. In order to study the transient flow field characteristics and the variations of the main flow parameters (e.g., velocity, density, pressure, etc.) with the magnetic induction intensity of the inductive pulsed plasma, the two-dimensional axisymmetric unsteady magnetohydrodynamic numerical model is introduced by employing the hyperbolic divergence cleaning method. The plasma is excited by the single pulse energy varying in the sine waveform with a period of 10 s, and the flow field of the peak magnetic induction intensity ranging from 0.1 T to 0.55 T, is calculated. The results show that the high density and speed region gradually moves forward and away from the coil, leaving the low density and speed plasma behind, meanwhile, the high temperature region is near the coil throughoutthe discharge, and the inductive magnetic field leads in the phase, compared with the flow parameters, which indicates the effective permeation of the pulsed energy into the neutral gas and the plasma. As the input single pulse energy increases, the maximum axial velocity of the plasma increases and the time at which the flow velocity reaches a peak value moves up. The current sheets of the same direction, which are located on the surface of the induction coil at the beginning, appear as the discharge initiates and moves forward with the influenced flow domain expanding as the process goes on, and an opposite sign current sheet grows when the time passes through the first quarter of the sine period, which is also near the surface of the coil and heats the low-density plasma and the neutral gas. The opposite direction current sheets slow down the velocity of the plasmoid. Due to the nonlinear property of the coil-plasma interaction, the acceleration efficiency of the induction coil improves irregularly as the magnetic induction intensity increases, which grows slowly at a low level, and when the intensity reaches a certain critical value, for the configuration studied in this work the particular value is 0.45 T, the acceleration efficiency increases significantly, indicating that a larger part of the pulsed energy is converted into the plasma kinetic energy.
      Corresponding author: Cheng Yu-Guo, hlcyg@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675040) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. DUT15ZD(G)01).
    [1]

    Choueiri E Y, Polzin K A 2006 J. Prop. Power 22 3

    [2]

    Cheng Y G, Cheng M S, Wang M G, Li X K 2014 Acta Phys. Sin. 63 035203 (in Chinese)[成玉国, 程谋森, 王墨戈, 李小康 2014 物理学报 63 035203]

    [3]

    Cheng Y G, Cheng M S, Wang M G, Li X K 2014 Chin. Phys. B 23 105202

    [4]

    Mikellides P G, Neilly C 2007 J. Prop. Power 23 1

    [5]

    Polzin K A 2011 J. Prop. Power 27 3

    [6]

    Jahn R G 1968 Physics of Electric Propulsion (New York:McGraw-Hill) p268

    [7]

    Polzin K A, Choueiri E Y 2006 IEEE Trans. Plasma Sci. 34 3

    [8]

    Mikellides P G, Villarreal J K 2007 J. Appl. Phys. 102 10

    [9]

    Dailey C L, Lovberg R H 1993 NASA CR-1993-191155

    [10]

    Mikellides P G, Turchi P J, Roderick N F 2000 J. Prop. Power 16 5

    [11]

    Xie Z H 2013 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[谢泽华 2015 博士学位论文 (长沙:国防科学技术大学)]

    [12]

    Polzin K A, Sankaran K, Ritchie A G, Reneau J P 2013 J. Phys. D:Appl. Phys. 46 475201

    [13]

    Tian Z Y 2008 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[田正雨2008博士学位论文(长沙:国防科学技术大学)]

    [14]

    Li X K 2011 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[李小康2011博士学位论文(长沙:国防科学技术大学)]

    [15]

    Kim S, Soogab L, Kyu H K 2008 J. Comput. Phys. 227 8

    [16]

    Dedner A, Kemm F, Krner D, Munz C D, Schnitzer T, Wesenberg M 2002 J. Comput. Phys. 175 2

    [17]

    Dedner A 2003 Ph. D. Dissertation (Freiburg im Breisgau:Alert Ludwigs-Universitt Freiburg)

    [18]

    Yan C 2006 Computational Fluid Dynamic (Beijing:Beihang University Press) pp254-258(in Chinese)[阎超2006计算流体力学方法及其应用(北京:北京航空航天大学出版社)第254258页]

    [19]

    Kim K H, Kim C 2005 J. Comput. Phys. 208 2

    [20]

    Chen X 2009 Thermal Plasma Heat Transfer and Flow (Beijing:Science Press) pp48-59(in Chinese)[陈熙2009热等离子体传热与流动(北京:科学出版社)第4859页]

    [21]

    Калантаров П Л, Неитлчы Л А(translated by Chen T M, Liu B A, Luo Y L, Zhang Y H) 1992 Inductance Calculation Handbook (Beijing:Mechanism Industry Press) pp1-9(in Chinese)[卡兰塔罗夫П Л, 采伊特林Л А 著(陈汤铭, 刘保安, 罗应力, 张奕黄译) 1992电感计算手册(北京:机械工业出版社)第19页]

    [22]

    Che B X 2015 M. S. Thesis (Changsha:National University of Defense Technology) (in Chinese)[车碧轩2015硕士学位论文(长沙:国防科学技术大学)]

    [23]

    Polzin K A, Choueiri E Y 2006 IEEE Trans. Plasma Sci. 34 3

  • [1]

    Choueiri E Y, Polzin K A 2006 J. Prop. Power 22 3

    [2]

    Cheng Y G, Cheng M S, Wang M G, Li X K 2014 Acta Phys. Sin. 63 035203 (in Chinese)[成玉国, 程谋森, 王墨戈, 李小康 2014 物理学报 63 035203]

    [3]

    Cheng Y G, Cheng M S, Wang M G, Li X K 2014 Chin. Phys. B 23 105202

    [4]

    Mikellides P G, Neilly C 2007 J. Prop. Power 23 1

    [5]

    Polzin K A 2011 J. Prop. Power 27 3

    [6]

    Jahn R G 1968 Physics of Electric Propulsion (New York:McGraw-Hill) p268

    [7]

    Polzin K A, Choueiri E Y 2006 IEEE Trans. Plasma Sci. 34 3

    [8]

    Mikellides P G, Villarreal J K 2007 J. Appl. Phys. 102 10

    [9]

    Dailey C L, Lovberg R H 1993 NASA CR-1993-191155

    [10]

    Mikellides P G, Turchi P J, Roderick N F 2000 J. Prop. Power 16 5

    [11]

    Xie Z H 2013 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[谢泽华 2015 博士学位论文 (长沙:国防科学技术大学)]

    [12]

    Polzin K A, Sankaran K, Ritchie A G, Reneau J P 2013 J. Phys. D:Appl. Phys. 46 475201

    [13]

    Tian Z Y 2008 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[田正雨2008博士学位论文(长沙:国防科学技术大学)]

    [14]

    Li X K 2011 Ph. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[李小康2011博士学位论文(长沙:国防科学技术大学)]

    [15]

    Kim S, Soogab L, Kyu H K 2008 J. Comput. Phys. 227 8

    [16]

    Dedner A, Kemm F, Krner D, Munz C D, Schnitzer T, Wesenberg M 2002 J. Comput. Phys. 175 2

    [17]

    Dedner A 2003 Ph. D. Dissertation (Freiburg im Breisgau:Alert Ludwigs-Universitt Freiburg)

    [18]

    Yan C 2006 Computational Fluid Dynamic (Beijing:Beihang University Press) pp254-258(in Chinese)[阎超2006计算流体力学方法及其应用(北京:北京航空航天大学出版社)第254258页]

    [19]

    Kim K H, Kim C 2005 J. Comput. Phys. 208 2

    [20]

    Chen X 2009 Thermal Plasma Heat Transfer and Flow (Beijing:Science Press) pp48-59(in Chinese)[陈熙2009热等离子体传热与流动(北京:科学出版社)第4859页]

    [21]

    Калантаров П Л, Неитлчы Л А(translated by Chen T M, Liu B A, Luo Y L, Zhang Y H) 1992 Inductance Calculation Handbook (Beijing:Mechanism Industry Press) pp1-9(in Chinese)[卡兰塔罗夫П Л, 采伊特林Л А 著(陈汤铭, 刘保安, 罗应力, 张奕黄译) 1992电感计算手册(北京:机械工业出版社)第19页]

    [22]

    Che B X 2015 M. S. Thesis (Changsha:National University of Defense Technology) (in Chinese)[车碧轩2015硕士学位论文(长沙:国防科学技术大学)]

    [23]

    Polzin K A, Choueiri E Y 2006 IEEE Trans. Plasma Sci. 34 3

  • [1] Bowen Yu, Xiaotian He, Jinliang Xu. Numerical simulation of fluid-structure coupled heat transfer characteristics of supercritical CO2 pool heat transfer*. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231953
    [2] Chen Guo-Hua, Shi Ke-Jun, Chu Jin-Ke, Wu Hao, Zhou Chi-Lou, Xiao Shu. Numerical simulation and optimization of cooling flow field of cylindrical cathode with annular magnetic field. Acta Physica Sinica, 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [3] Niu Yue, Bao Wei-Min, Li Xiao-Ping, Liu Yan-Ming, Liu Dong-Lin. Numerical simulation and experimental study of high-power thermal equilibrium inductively coupled plasma. Acta Physica Sinica, 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [4] Ding Ming-Song, Jiang Tao, Dong Wei-Zhong, Gao Tie-Suo, Liu Qing-Zong, Fu Yang-Ao-Xiao. Numerical analysis of influence of thermochemical model on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [5] Jiang Chun-Hua, Zhao Zheng-Yu. Numerical simulation of recombination rate effect on development of equatorial plasma bubbles. Acta Physica Sinica, 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [6] Yu Ming-Hao. Numerical investigation on interaction mechanisms between flow field and electromagnetic field for nonequilibrium inductively coupled plasma. Acta Physica Sinica, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [7] Guo Heng, Zhang Xiao-Ning, Nie Qiu-Yue, Li He-Ping, Zeng Shi, Li Zhi-Hui. Numerical modelling for characteristics of the meso-pressure six-phase alternative current arc discharge plasma jet. Acta Physica Sinica, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [8] Che Bi-Xuan, Li Xiao-Kang, Cheng Mou-Sen, Guo Da-Wei, Yang Xiong. A magnetohydrodynamic numerical model with external circuit coupled for pulsed inductive thrusters. Acta Physica Sinica, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [9] Huang Pei-Pei, Liu Da-Gang, Liu La-Qun, Wang Hui-Hui, Xia Meng-Ju, Chen Ying. Three-dimensional numerical simulation of the single-channel pulsed-power vacuum device. Acta Physica Sinica, 2013, 62(19): 192901. doi: 10.7498/aps.62.192901
    [10] He Fu-Shun, Li Liu-He, Li Fen, Dun Dan-Dan, Tao Chan-Cai. Numerical simulation of enhanced glow discharge plasma immersion ion implantation using three-dimensional PIC/MC model. Acta Physica Sinica, 2012, 61(22): 225203. doi: 10.7498/aps.61.225203
    [11] Jin Dong-Huan, Liu Wen-Guang, Chen Xing, Lu Qi-Sheng, Zhao Yi-Jun. Numerical study of flow field characteristics for triplet impingement injector and combustor. Acta Physica Sinica, 2012, 61(6): 064206. doi: 10.7498/aps.61.064206
    [12] Pang Xue-Xia, Deng Ze-Chao, Jia Peng-Ying, Liang Wei-Hua. Numerical simulation of NOx species behaviour in atmosphere plasma. Acta Physica Sinica, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [13] Wang Peng, Tian Xiu-Bo, Wang Zhi-Jian, Gong Chun-Zhi, Yang Shi-Qin. Numerical simulation of plasma immersion ion implantation for cubic target with finite length using three-dimensional particle-in-cell model. Acta Physica Sinica, 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [14] Guo Wen-Qiong, Zhou Xiao-Jun, Zhang Xiong-Jun, Sui Zhan, Wu Deng-Sheng. Simulation electro-optic switch of plasma-electrode Pockels cells driven by one-pulse process. Acta Physica Sinica, 2006, 55(7): 3519-3523. doi: 10.7498/aps.55.3519
    [15] Zhang Yuan-Tao, Wang De-Zhen, Wang Yan-Hui. Numerical simulation of filamentary discharge controlled by dielectric barrier at atmospheric pressure. Acta Physica Sinica, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [16] Zhou Guo-Cheng, Cao Jin-Bin, Wang De-Ju, Cai Chun-Lin. Low-frequency waves in collisionless plasma current sheet. Acta Physica Sinica, 2004, 53(8): 2644-2653. doi: 10.7498/aps.53.2644
    [17] Yuan Xing-Qiu, Li Hui, Zhao Tai-Zhe, Wang Fei, Y u Guo-Yang, Guo Wen-Kang, Xu Ping. Study of the characteristic of D.C.arc plasma torch*. Acta Physica Sinica, 2004, 53(11): 3806-3813. doi: 10.7498/aps.53.3806
    [18] Yuan Xing-Qiu, Li Hui, Zhao Tai-Zhe, Wang Fei, Guo Wen-Kang, Xu Ping. Numerical study of supersonic plasma torch. Acta Physica Sinica, 2004, 53(3): 788-792. doi: 10.7498/aps.53.788
    [19] Wang Yan-Hui, Wang De-Zhen. Numerical simulation of dielectric-barrier-controlled glow discharge at atmosphe ric pressure. Acta Physica Sinica, 2003, 52(7): 1694-1700. doi: 10.7498/aps.52.1694
    [20] Zi Bing-Tao, Yao Ke-Fu, Xu Guang-Ming, Cui Jian-Zhong. Numerical simulation of liguid alloy flow field during solidification under applied pulsed magnetic fields. Acta Physica Sinica, 2003, 52(1): 115-119. doi: 10.7498/aps.52.115
Metrics
  • Abstract views:  5165
  • PDF Downloads:  185
  • Cited By: 0
Publishing process
  • Received Date:  12 October 2016
  • Accepted Date:  10 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回