Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Self-reliance and independently developed high-finesse spherical ultrastable optical reference cavity

Liu Jun Chen Bo-Xiong Xu Guan-Jun Cui Xiao-Xu Bai Bo Zhang Lin-Bo Chen Long Jiao Dong-Dong Wang Tao Liu Tao Dong Rui-Fang Zhang Shou-Gang

Citation:

Self-reliance and independently developed high-finesse spherical ultrastable optical reference cavity

Liu Jun, Chen Bo-Xiong, Xu Guan-Jun, Cui Xiao-Xu, Bai Bo, Zhang Lin-Bo, Chen Long, Jiao Dong-Dong, Wang Tao, Liu Tao, Dong Rui-Fang, Zhang Shou-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ultra-stable reference cavity with high finesse is a crucial component in a narrow-linewidth laser system which is widely used in time and frequency metrology, the test of Lorentz invariance, and measure of gravitational wave. In this paper, we report the recent progress of the self-made spherical reference cavity, aiming at the future space application. The main function of cavity is the reference of ultra-stable laser, which is the local reference oscillation source of space optical clock. The diameter of the designed spherical cavity spacer made of ultra-low expansion glass is 80 mm, and the cavity length is 78 mm, flat-concave mirrors configuration, and the radius of the concave mirror is 0.5 m. The support structure is designed to have two 3.9 mm-radius spherical groves located at the poles of the sphere along the diameter direction (defined as support axis), and a 53 angle between the support axis and the optical axis. The mechanic vibration sensitivities of the cavity along and perpendicular to the optical axis are both calculated by finite element analysis method to be below 110-10/g. Five-axis linkage CNC machining sphere forming technology is applied to S80 mm spherical surface processing with spherical contour degree up to 0.02. After a three-stage surface polishing processes, the fused silicamirror substratessurface roughness is measured to be less than 0.2 nm (rms). Implementing double ion beam sputtering technique for mirror coating, the reflection of the coating achieves a reflectivity of 99.999% and a loss of 4 ppm for 698 nm laser. The coating surface roughness is measured to be 0.3 nm (rms). The cavity spacer and the mirror are bonded by dried optical contact. In order to improve the thermal noise characteristics of the cavity, an ultra low expansion ring is contacted optically to the outer surface of the mirror. The cavity is characterized by ring-down spectroscopy, and the finesse is around 195000. With the help of a home-made 698 nm ultra narrow line-width laser, the cavity line-width is measured to be 9.8 kHz by sweeping cavity method. A 698 nm semiconductor laser is locked to this spherical cavity by PDH technology, and the cavity loss is measured to be5 ppm.
      Corresponding author: Liu Tao, taoliu@ntsc.ac.cn
    • Funds: Project supported by the Special Fund for Research on National Major Research Instruments and Facilities of the National Natural Science Fundation of China (Grant No. 61127901), the National Natural Science Foundation of China (Grant Nos. 11273024, 61025023), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11403031).
    [1]

    Leibrandt D R, Thorpe M J, Notcutt M, Drullinger R E, Rosenband T, Bergquist J C 2011 Opt. Express 19 3471

    [2]

    Kessler T, Hagemann C, Grebing C, Legero T, Steer U, Riehle F, Martin M J, Chen L, Ye J 2012 Nat. Photonics 6 687

    [3]

    Swallows M D, Martin M J, Bishof M, Benko C, Lin Y, Blatt S, Rey A M, Ye J 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 416

    [4]

    Cole G D, Zhang W, Martin M J, Ye J, AspelmeyerM 2013 Nat. Photon. 7 644

    [5]

    Hagemann C, Grebing C, Lisdat C, Falke S, Legero T, Sterr U, Riehle F, Martin M J, Ye J 2014 Opt. Lett. 39 5102

    [6]

    Wu L, Jiang Y, Ma C, Qi W, Yu H, Bi Z, Ma L 2016 Sci. Rep. 6 24969

    [7]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [8]

    Chou C W, Hume D B, Koelemeij J C, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [9]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [10]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896

    [11]

    Heinecke D C, Bartels A, Diddams S A 2011 Opt. Express 19 18440

    [12]

    Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband, Lemke T N, Ludlow A, Jiang Y, Oates C W, Diddams S A 2011 Nat. Photonics 5 425

    [13]

    Hough J, Rowan S 2005 J. Opt. A: Pure Appl. Opt. 7 544

    [14]

    Willke B, Danzmann K, Frede M, King P, Kracht D, Kwee P, Puncken O, Savage R L, Schulz B, Seifert F, Veltkamp C, Wagner S, Weels P, Winkelmann L 2008 Classical Quantum Gravity 25 114040

    [15]

    Williams P A, Swann W C, Newbury N R 2008 J. Opt. Soc. Am. B 25 1284

    [16]

    Kessler T, Hagemann C, Grebing G, Legero T, Sterr U, Riehle F, Martin M J, Chen L, Ye J 2012 Nat. Photonics 6 687

    [17]

    Wu L, Jang Y, Ma C, Qi W, Yu H, Bi Z, Ma L 2016 Sci. Rep. 6 24969

    [18]

    Levin Y 1998 Phys. Rev. D 57 659

    [19]

    Numata K, Kemery A, Camp J 2004 Phys. Rev. Lett. 93 250602

    [20]

    Nietzsche S, Nawrodt R, Zimmer A, Schnabel R, Vodel W, Seidel P 2006 Supercond. Sci. Technol. 19 293

    [21]

    Notcutt M, Ma L S, Ye J, Hall J L 2005 Opt. Lett. 30 1815

    [22]

    Ludlow A D, Huang X, Notcutt M, Zanon T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641

    [23]

    Nazarova T, Riehle F, Sterr U 2006 Appl. Phy. B 83 531

    [24]

    Webster S A, Oxborrow M, Gill P 2007 Phy. Rev. A 75 10064

    [25]

    Chen L S, Hall J L, Ye J, Yang T, Zang E, Li T C 2006 Phy. Rev. A 30 150

    [26]

    Lyngnes O, Ode A, Ness D C 2009 Proceedings of SPIE-The International Society 7504

    [27]

    Traggis N G, Claussen N R 2010 tetitSPIE LASE 7578

    [28]

    Darrow M C2014 Macalester Jourmal of Physics Astronomy 2 3

    [29]

    Zalicki P, Zare R N 1995 J. Chem. Phys. 102 2708

    [30]

    Webster S, Gill P 2011 Opt. Lett. 36 3572

    [31]

    Schiller S, Gorlitz A, Nevsky A, Alighanbari S 2012 Physics 48 412

    [32]

    Kessler T, Legero T, Sterr U 2012 J. Opt. Soc. Am. B 29 178

    [33]

    Legero T, Kessler T, Sterr U 2010 J. Opt. Soc. Am. B 27 776

    [34]

    Ong J L, Lucas L C, Lacefield W R, Rigney E D 1992 Biomaterials 13 249

    [35]

    Wu J J, Wu C T, Liao Y C, Lu T R, Chen L C, Chen K H, Hwa L G, Kuo C T, Ling K J 1999 Thin Solid Films s355 417

    [36]

    Cormie P, Mcbride J M, Mccaulley G O 2009 J. Strength Cond. Res. 23 177

    [37]

    Berg S, Katardjiev L 1999 J. Vac. Sci. Technol. A 17 1916

    [38]

    Flaminio R, Franc J, Michel C, Morgado N, Pinard L, Sassolas B 2010 Classical Quantum Gravity 27 84030

    [39]

    Buzea C, Robbie K 2005 Rep. Prog. Phys. 68 385

    [40]

    Mitin V F, Lazarow V K, Lari L, Lytvyn P M, Kholevchuk V V, Matveeva L A, Mitin V V, Venger E F 2014 Thin Solid Films 550 715

    [41]

    Alexandrovski A 2009 Proceedings of SPIE-The International Society 7193 71930D-13

    [42]

    Lawrence M J, Willke B, Husman M E, Gustafson E K, Byer R L 1999 J. Opt. Soc. Am. B 16 523

    [43]

    Foltynowicz A 2009 Ph. D. Dissertation (Ume: Ume University)

    [44]

    Hofstetter D, Thornton R L 1998 IEEE J. Quantum Electron. 34 1914

    [45]

    Hood C J, Kimble H J, Ye J 2001 Phy. Rev. A 64 33804

  • [1]

    Leibrandt D R, Thorpe M J, Notcutt M, Drullinger R E, Rosenband T, Bergquist J C 2011 Opt. Express 19 3471

    [2]

    Kessler T, Hagemann C, Grebing C, Legero T, Steer U, Riehle F, Martin M J, Chen L, Ye J 2012 Nat. Photonics 6 687

    [3]

    Swallows M D, Martin M J, Bishof M, Benko C, Lin Y, Blatt S, Rey A M, Ye J 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 416

    [4]

    Cole G D, Zhang W, Martin M J, Ye J, AspelmeyerM 2013 Nat. Photon. 7 644

    [5]

    Hagemann C, Grebing C, Lisdat C, Falke S, Legero T, Sterr U, Riehle F, Martin M J, Ye J 2014 Opt. Lett. 39 5102

    [6]

    Wu L, Jiang Y, Ma C, Qi W, Yu H, Bi Z, Ma L 2016 Sci. Rep. 6 24969

    [7]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [8]

    Chou C W, Hume D B, Koelemeij J C, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

    [9]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [10]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896

    [11]

    Heinecke D C, Bartels A, Diddams S A 2011 Opt. Express 19 18440

    [12]

    Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband, Lemke T N, Ludlow A, Jiang Y, Oates C W, Diddams S A 2011 Nat. Photonics 5 425

    [13]

    Hough J, Rowan S 2005 J. Opt. A: Pure Appl. Opt. 7 544

    [14]

    Willke B, Danzmann K, Frede M, King P, Kracht D, Kwee P, Puncken O, Savage R L, Schulz B, Seifert F, Veltkamp C, Wagner S, Weels P, Winkelmann L 2008 Classical Quantum Gravity 25 114040

    [15]

    Williams P A, Swann W C, Newbury N R 2008 J. Opt. Soc. Am. B 25 1284

    [16]

    Kessler T, Hagemann C, Grebing G, Legero T, Sterr U, Riehle F, Martin M J, Chen L, Ye J 2012 Nat. Photonics 6 687

    [17]

    Wu L, Jang Y, Ma C, Qi W, Yu H, Bi Z, Ma L 2016 Sci. Rep. 6 24969

    [18]

    Levin Y 1998 Phys. Rev. D 57 659

    [19]

    Numata K, Kemery A, Camp J 2004 Phys. Rev. Lett. 93 250602

    [20]

    Nietzsche S, Nawrodt R, Zimmer A, Schnabel R, Vodel W, Seidel P 2006 Supercond. Sci. Technol. 19 293

    [21]

    Notcutt M, Ma L S, Ye J, Hall J L 2005 Opt. Lett. 30 1815

    [22]

    Ludlow A D, Huang X, Notcutt M, Zanon T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641

    [23]

    Nazarova T, Riehle F, Sterr U 2006 Appl. Phy. B 83 531

    [24]

    Webster S A, Oxborrow M, Gill P 2007 Phy. Rev. A 75 10064

    [25]

    Chen L S, Hall J L, Ye J, Yang T, Zang E, Li T C 2006 Phy. Rev. A 30 150

    [26]

    Lyngnes O, Ode A, Ness D C 2009 Proceedings of SPIE-The International Society 7504

    [27]

    Traggis N G, Claussen N R 2010 tetitSPIE LASE 7578

    [28]

    Darrow M C2014 Macalester Jourmal of Physics Astronomy 2 3

    [29]

    Zalicki P, Zare R N 1995 J. Chem. Phys. 102 2708

    [30]

    Webster S, Gill P 2011 Opt. Lett. 36 3572

    [31]

    Schiller S, Gorlitz A, Nevsky A, Alighanbari S 2012 Physics 48 412

    [32]

    Kessler T, Legero T, Sterr U 2012 J. Opt. Soc. Am. B 29 178

    [33]

    Legero T, Kessler T, Sterr U 2010 J. Opt. Soc. Am. B 27 776

    [34]

    Ong J L, Lucas L C, Lacefield W R, Rigney E D 1992 Biomaterials 13 249

    [35]

    Wu J J, Wu C T, Liao Y C, Lu T R, Chen L C, Chen K H, Hwa L G, Kuo C T, Ling K J 1999 Thin Solid Films s355 417

    [36]

    Cormie P, Mcbride J M, Mccaulley G O 2009 J. Strength Cond. Res. 23 177

    [37]

    Berg S, Katardjiev L 1999 J. Vac. Sci. Technol. A 17 1916

    [38]

    Flaminio R, Franc J, Michel C, Morgado N, Pinard L, Sassolas B 2010 Classical Quantum Gravity 27 84030

    [39]

    Buzea C, Robbie K 2005 Rep. Prog. Phys. 68 385

    [40]

    Mitin V F, Lazarow V K, Lari L, Lytvyn P M, Kholevchuk V V, Matveeva L A, Mitin V V, Venger E F 2014 Thin Solid Films 550 715

    [41]

    Alexandrovski A 2009 Proceedings of SPIE-The International Society 7193 71930D-13

    [42]

    Lawrence M J, Willke B, Husman M E, Gustafson E K, Byer R L 1999 J. Opt. Soc. Am. B 16 523

    [43]

    Foltynowicz A 2009 Ph. D. Dissertation (Ume: Ume University)

    [44]

    Hofstetter D, Thornton R L 1998 IEEE J. Quantum Electron. 34 1914

    [45]

    Hood C J, Kimble H J, Ye J 2001 Phy. Rev. A 64 33804

  • [1] Wang Xia, Jia Fang-Shi, Yao Ke, Yan Jun, Li Ji-Guang, Wu Yong, Wang Jian-Guo. Hyperfine interaction constants and Landé g factors of clock states of Al-like ions. Acta Physica Sinica, 2023, 72(22): 223101. doi: 10.7498/aps.72.20230940
    [2] Kong De-Huan, Guo Feng, Li Ting, Lu Xiao-Tong, Wang Ye-Bing, Chang Hong. Evaluation of systematic uncertainty for transportable 87Sr optical lattice clock. Acta Physica Sinica, 2021, 70(3): 030601. doi: 10.7498/aps.70.20201204
    [3] Li Ting, Lu Xiao-Tong, Zhou Chi-Hua, Yin Mo-Juan, Wang Ye-Bing, Chang Hong. Zero-crossing temperature of ultra-stable optical reference cavity measured by optical transition spectrum. Acta Physica Sinica, 2021, 70(7): 073701. doi: 10.7498/aps.70.20201721
    [4] Jiang Hai-Feng. Progresses of ultrastable optical-cavity-based microwave source. Acta Physica Sinica, 2018, 67(16): 160602. doi: 10.7498/aps.67.20180751
    [5] Kang Peng, Sun Yu, Wang Jin, Liu An-Wen, Hu Shui-Ming. Measurement of molecular absorption spectrum with a laser locked on a high-finesse cavity. Acta Physica Sinica, 2018, 67(10): 104206. doi: 10.7498/aps.67.20172532
    [6] Lin Yi-Ge, Fang Zhan-Jun. Strontium optical lattice clock. Acta Physica Sinica, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [7] Zhang Xi, Liu Hui, Jiang Kun-Liang, Wang Jin-Qi, Xiong Zhuan-Xian, He Ling-Xiang, Lü Bao-Long. Transfer cavity scheme for stabilization of lattice laser in ytterbium lattice clock. Acta Physica Sinica, 2017, 66(16): 164205. doi: 10.7498/aps.66.164205
    [8] Tian Xiao, Wang Ye-Bing, Lu Ben-Quan, Liu Hui, Xu Qin-Fang, Ren Jie, Yin Mo-Juan, Kong De-Huan, Chang Hong, Zhang Shou-Gang. Experimental research on loading strontium bosons into the optical lattice operating at the “magic” wavelength. Acta Physica Sinica, 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [9] Li Ping-Yuan, Chen Yong-Liang, Zhou Da-Jin, Chen Peng, Zhang Yong, Deng Shui-Quan, Cui Ya-Jing, Zhao Yong. Research of thermal expansion coefficient of topological insulator Bi2Te3. Acta Physica Sinica, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [10] Du Jin-Jin, Li Wen-Fang, Wen Rui-Juan, Li Gang, Zhang Tian-Cai. Precision measurement of resonate frequency and the effective cavity length of the high finesse optical micro-cavity. Acta Physica Sinica, 2013, 62(19): 194203. doi: 10.7498/aps.62.194203
    [11] Wang Ye-Bing, Chen Jie, Tian Xiao, Gao Feng, Chang Hong. Experimental investigation of spectrum of strontium intercombination transition. Acta Physica Sinica, 2012, 61(2): 020601. doi: 10.7498/aps.61.020601
    [12] Gao Feng, Wang Ye-Bing, Tian Xiao, Xu Peng, Chang Hong. Observation of transitions in strontium triplet state and its application in optical clock. Acta Physica Sinica, 2012, 61(17): 173201. doi: 10.7498/aps.61.173201
    [13] Han Hai-Nian, Zhang Jin-Wei, Zhang Qing, Zhang Long, Wei Zhi-Yi. Theoretical and experimental study on femtosecond enhancement resonator. Acta Physica Sinica, 2012, 61(16): 164206. doi: 10.7498/aps.61.164206
    [14] Wang Xin-Liang, Chen Jie, Wang Ye-Bing, Gao Feng, Zhang Shou-Gang, Liu Hai-Feng, Chang Hong. Measurement of velocity distribution for strontium atom beam by Zeeman Scanning technology. Acta Physica Sinica, 2011, 60(10): 103201. doi: 10.7498/aps.60.103201
    [15] Liu Tao, Zhang Tian-Cai, Wang Jun-Min, Peng Kun-Chi. Optical dipole trap in a high-finesse micro-cavity. Acta Physica Sinica, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
    [16] Li Li-Ping, Liu Tao, Li Gang, Zhang Tian-Cai, Wang Jun-Min. Measurement of ultra-low losses in optical supercavity. Acta Physica Sinica, 2004, 53(5): 1401-1405. doi: 10.7498/aps.53.1401
    [17] YAN ZU-TONG, SUN ZHEN-HUA. THE PRESSURE DEPENDENCE OF THE EXPANSIVITY AND OF THE ANDERSON-GRüNEISEN PARAMETER IN THE GENERAL CONDITION. Acta Physica Sinica, 1989, 38(10): 1634-1641. doi: 10.7498/aps.38.1634
    [18] RUAN YAO-ZHONG, LI LI-PING, HU XUE-LONG, PENG DING-KUN, HU JUN-BAO, ZHANG YU-HENG. THERMAL EXPANSION COEFFICIENT OF YBa2Cu3O7-x WITHORTHORHOMBIC AND TETRAGONAL PHASES. Acta Physica Sinica, 1988, 37(12): 2034-2037. doi: 10.7498/aps.37.2034
    [19] RUAN YAO-ZHONG, LI LI-PING, WU ZHI-QIANG, HE PING-SHENG. THERMAL EXPANSION COEFFICIENTS OF POLYBIS-(P-TOLUENE SULFONATE) OF 2,4-HEXADIYNE-l,6-DIAL SINGLE CRYSTAL AT LOW TEMPERATURE. Acta Physica Sinica, 1987, 36(9): 1219-1223. doi: 10.7498/aps.36.1219
    [20] GAO ZHAN-PENG. TEMPERATURE DEPENDENCE OF THEMAL EXPANSION COEFFICENT, BULK MODULUS AND GRüNEISEN PARAMENTRS OF SOLIDS. Acta Physica Sinica, 1981, 30(5): 679-685. doi: 10.7498/aps.30.679
Metrics
  • Abstract views:  7387
  • PDF Downloads:  433
  • Cited By: 0
Publishing process
  • Received Date:  29 September 2016
  • Accepted Date:  18 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回