Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of opal photonic crystal infrared stealth materials

Zhang Lian-Chao Qiu Li-Li Lu Wei Yu Ying-Jie Meng Zi-Hui Wang Shu-Shan Xue Min Liu Wen-Fang

Citation:

Preparation of opal photonic crystal infrared stealth materials

Zhang Lian-Chao, Qiu Li-Li, Lu Wei, Yu Ying-Jie, Meng Zi-Hui, Wang Shu-Shan, Xue Min, Liu Wen-Fang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the development of infrared detection technology, the survival of military target is now under serious threat. Therefore, new infrared stealth technologies and materials are now in an urgent demand. The photonic crystal (PhC) possesses regularly repeating structure which results in band-gap and diffraction satisfying Bragg's law of diffraction. The PhC presents unique optical properties and functionality. The PhC with band-gap located in visible band is used widely as biosensor, chemical sensor, optical filter, reflector, modulator, metasurface and solar cell. The PhC with band-gap located in infrared band can be used to control the propagations of the electromagnetic waves of infrared band, and could be used as a promising material in the infrared stealth technology. Photonic structure used to tune the infrared radiation usually has a one-dimensional layer-by-layer stack or three-dimensional wood pile structure. However, the poor flexibility, low strength, small area coverage, complicated fabrication process and high cost can prevent this new infrared stealth technology from being applied and developed. In this report, a simple and cost-effective method of preparing the opal PhC materials is proposed, and this infrared stealth material forbids electromagnetic waves of infrared band to propagate on account of band-gap.In this paper, opal PhCs materials with high quality are assembled from SiO2 colloidal microspheres with micrometer size by using optimized vertical deposition method. We calculate the relation between the diameter of SiO2 colloidal microsphere and the frequency of opal PhCs band-gap in theory and verified in experiment, which operates in the working band of infrared detector. The results show that the diameters of SiO2 colloidal microspheres should be 1.33-2.22 m and 3.56-5.33 m. A series of monodispersed micrometer SiO2 colloidal microspheres is prepared by the modified Stber method, and bigger microspheres are prepared by using the seeded polymerization method. Then, we choose the diameters of 1.5 m and 4.3 m SiO2 microspheres to prepare the opal PhCs materials. The PhCs materials assembled by 1.5 m SiO2 microspheres are prepared in alcohol under 60 ℃ or in acetone under 40 ℃; while the PhCs material assembled by 4.3 m SiO2 microspheres is prepared in alcohol/dibromomethane =3:1 under 60 ℃. Finally, the opal PhC materials with band-gap located in 2.8-3.5 m and 8.0-10.0 m are successfully prepared, and the widths of band-gap are 0.7 m and 1.9 m, respectively. These opal PhCs materials could change the infrared radiation characteristics of the target in infrared waveband, and meet the requirements of wide band-gap for infrared stealth materials.
      Corresponding author: Qiu Li-Li, qiulili@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21375009, U153010105) and the Foundation for Science and Technology Innovation Program of Beijing Institute of Technology, China (Grant No. 20151042004).
    [1]

    Li R, Lu Y H, Gong C L, Liu Y 2012 Infrared Phys. Technol. 55 380

    [2]

    Liu F, Shao X P, Han P L, Li X B, Yang C 2014 Opt. Eng. 53 744

    [3]

    Wang R F, Lu J H 2015 Proc. SPIE (Bellingham: SPIE) 9674

    [4]

    Chen X, Li J S, Tang Y, Hu B 2010 Adv. Intel. Soft Comput. 114 1009

    [5]

    Zhang S Q, Shi Y L, Huang C G, Lian C C 2007 Acta Phys. Sin. 56 5508 (in Chinese) [张拴勤, 石云龙, 黄长庚, 连长春 2007 物理学报 56 5508]

    [6]

    Mao Z, Yu X, Zhang L, Zhong Y, Xu H 2014 Vacuum 104 111

    [7]

    Wang T, He J P, Zhao J H, Ding X C, Zhao J Q, Wu S C, Guo Y X 2010 Micropor. Mesopor. Mat. 134 58

    [8]

    Wang W, Fang S, Zhang L, Mao Z 2014 Text. Res. J. 85 1065

    [9]

    Liu X F, Lai Y K, Huang J Y, Aldeyab S S, Zhang K Q 2014 J. Mater. Chem. 3 345

    [10]

    Mao Z P, Wang W, Liu Y, Zhang L P, Zhong Y 2014 Thin Solid Films 558 208

    [11]

    Liu D, Cheng H, Xing X, Zhang C, Zheng W 2016 Infrared Phys. Technol. 77 339

    [12]

    Xue F, Duan T R, Xue M, Liu F, Wang Y F, Wei Z Q, Meng Z H 2011 Chin. J. Anal. Chem. 39 1015 (in Chinese) [薛飞, 段廷蕊, 薛敏, 刘烽, 王一飞, 韦泽全, 孟子晖 2011 分析化学 39 1015]

    [13]

    Lu W, Xue F, Huang S Y, Meng Z H, Xue M 2012 Chin. J. Anal. Chem. 40 1561 (in Chinese) [芦薇, 薛飞, 黄舒悦, 孟子晖, 薛敏 2012 分析化学 40 1561]

    [14]

    Chen W, Xue M, Xu F, Mu X R, Xu Z B, Meng Z H, Zhu G X, Shea K J 2015 Talanta 140 68

    [15]

    Xue F, Asher S A, Meng Z H, Wang F Y, Lu W, Xu M, Qi F L 2015 RSC Adv. 5 18939

    [16]

    Dai X, Xiang Y, Wen S 2011 Prog. Electromagn. Res. 120 17

    [17]

    Chen W D, Dong X Y, Chen Y, Zhu Q G, Wang N 2014 Acta Phys. Sin. 63 154207 (in Chinese) [陈卫东, 董昕宇, 陈颖, 朱奇光, 王宁 2014 物理学报 63 154207]

    [18]

    Zhu Q G, Dong X Y, Wang C F, Wang N, Chen W D 2015 Acta Phys. Sin. 64 034209 (in Chinese) [朱奇光, 董昕宇, 王春芳, 王宁, 陈卫东 2015 物理学报 64 034209]

    [19]

    Deng X H, Yuan J R, Liu J T, Wang T B 2015 Acta Phys. Sin. 64 074101 (in Chinese) [邓新华, 袁吉仁, 刘江涛, 王同标 2015 物理学报 64 074101]

    [20]

    Zhuang Y Y, Zhou W, Ji K, Chen H M 2015 Acta Phys. Sin. 64 224202 (in Chinese) [庄煜阳, 周雯, 季珂, 陈鹤鸣 2015 物理学报 64 224202]

    [21]

    Zhao X T, Zheng Y, Han Y, Zhou G Y, Hou Z Y, Shen J P, Wang C, Hou L T 2013 Acta Phys. Sin. 62 064215 (in Chinese) [赵兴涛, 郑义, 韩颖, 周桂耀, 侯峙云, 沈建平, 王春, 侯蓝田 2013 物理学报 62 064215]

    [22]

    Yang P L, Dai S X, Yi C S, Zhang P Q, Wang X S, Wu Y H, Yu Y S, Lin C G 2014 Acta Phys. Sin. 63 014210 (in Chinese) [杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生, 林常规 2014 物理学报 63 014210]

    [23]

    Zhang Z M, Wu B, Liu Y J, Jiang L, Mi N, Wang X S, Liu Z J, Liu S, Pan Z H, Nie Q H, Dai S X 2016 Acta Phys. Sin. 65 124205 (in Chinese) [赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋 2016 物理学报 65 124205]

    [24]

    Chen P Z, Hou G F, Suo S, Ni D, Zhang J J, Zhang X D, Zhao Y 2014 Acta Phys. Sin. 63 128801 (in Chinese) [陈培专, 侯国付, 索松, 倪牮, 张建军, 张晓丹, 赵颖 2014 物理学报 63 128801]

    [25]

    Gao Y F, Shi J M, Zhao D P, Xu B 2012 Infrared Laser Eng. 41 970 (in Chinese) [高永芳, 时家明, 赵大鹏, 许波 2012 红外与激光工程 41 970]

    [26]

    Arpin K A, Losego M D, Cloud A N, Ning H L, Mallek J, Sergeant P N, Zhu L X, Yu Z F, Kalanyan B, Fan S H, Braun P V 2013 Nat. Commun. 4 8

    [27]

    Zhang W, Xu G, Zhang J, Wang H, Hou H 2014 Opt. Mater. 37 343

    [28]

    Li J, Ye H, Wei M L 2010 Acta Armamentarii 31 1426 (in Chinese) [李进, 叶宏, 韦孟柳 2010 兵工学报 31 1426]

    [29]

    Li W S, Zhang Q, Huang H M, Fu Y H 2012 Infrared Laser Eng. 41 2578 (in Chinese) [李文胜, 张琴, 黄海铭, 付艳华 2012 红外与激光工程 41 2578]

    [30]

    Zhang M, Yang X J, Liu M Y 2009 J. Academy of Armored Force Engineering 23 89 (in Chinese) [张民, 杨小静, 刘名扬 2009 装甲兵工程学院学报 23 89]

    [31]

    Zhang W, Xu G, Shi X, Ma H, Li L 2015 Photonic Nanostruct. 14 46

    [32]

    Wang Z, Cheng Y, Nie Y, Wang X, Gong R 2014 J. Appl. Phys. 116 054905

    [33]

    Lin S Y, Fleming J G, Chow E, Bur J, Choi K K 2000 Phys. Rev. B 62 2243

    [34]

    Fleming J G, Lin S Y, Kady I E, Biswas R, Ho K M 2002 Nature 417 52

  • [1]

    Li R, Lu Y H, Gong C L, Liu Y 2012 Infrared Phys. Technol. 55 380

    [2]

    Liu F, Shao X P, Han P L, Li X B, Yang C 2014 Opt. Eng. 53 744

    [3]

    Wang R F, Lu J H 2015 Proc. SPIE (Bellingham: SPIE) 9674

    [4]

    Chen X, Li J S, Tang Y, Hu B 2010 Adv. Intel. Soft Comput. 114 1009

    [5]

    Zhang S Q, Shi Y L, Huang C G, Lian C C 2007 Acta Phys. Sin. 56 5508 (in Chinese) [张拴勤, 石云龙, 黄长庚, 连长春 2007 物理学报 56 5508]

    [6]

    Mao Z, Yu X, Zhang L, Zhong Y, Xu H 2014 Vacuum 104 111

    [7]

    Wang T, He J P, Zhao J H, Ding X C, Zhao J Q, Wu S C, Guo Y X 2010 Micropor. Mesopor. Mat. 134 58

    [8]

    Wang W, Fang S, Zhang L, Mao Z 2014 Text. Res. J. 85 1065

    [9]

    Liu X F, Lai Y K, Huang J Y, Aldeyab S S, Zhang K Q 2014 J. Mater. Chem. 3 345

    [10]

    Mao Z P, Wang W, Liu Y, Zhang L P, Zhong Y 2014 Thin Solid Films 558 208

    [11]

    Liu D, Cheng H, Xing X, Zhang C, Zheng W 2016 Infrared Phys. Technol. 77 339

    [12]

    Xue F, Duan T R, Xue M, Liu F, Wang Y F, Wei Z Q, Meng Z H 2011 Chin. J. Anal. Chem. 39 1015 (in Chinese) [薛飞, 段廷蕊, 薛敏, 刘烽, 王一飞, 韦泽全, 孟子晖 2011 分析化学 39 1015]

    [13]

    Lu W, Xue F, Huang S Y, Meng Z H, Xue M 2012 Chin. J. Anal. Chem. 40 1561 (in Chinese) [芦薇, 薛飞, 黄舒悦, 孟子晖, 薛敏 2012 分析化学 40 1561]

    [14]

    Chen W, Xue M, Xu F, Mu X R, Xu Z B, Meng Z H, Zhu G X, Shea K J 2015 Talanta 140 68

    [15]

    Xue F, Asher S A, Meng Z H, Wang F Y, Lu W, Xu M, Qi F L 2015 RSC Adv. 5 18939

    [16]

    Dai X, Xiang Y, Wen S 2011 Prog. Electromagn. Res. 120 17

    [17]

    Chen W D, Dong X Y, Chen Y, Zhu Q G, Wang N 2014 Acta Phys. Sin. 63 154207 (in Chinese) [陈卫东, 董昕宇, 陈颖, 朱奇光, 王宁 2014 物理学报 63 154207]

    [18]

    Zhu Q G, Dong X Y, Wang C F, Wang N, Chen W D 2015 Acta Phys. Sin. 64 034209 (in Chinese) [朱奇光, 董昕宇, 王春芳, 王宁, 陈卫东 2015 物理学报 64 034209]

    [19]

    Deng X H, Yuan J R, Liu J T, Wang T B 2015 Acta Phys. Sin. 64 074101 (in Chinese) [邓新华, 袁吉仁, 刘江涛, 王同标 2015 物理学报 64 074101]

    [20]

    Zhuang Y Y, Zhou W, Ji K, Chen H M 2015 Acta Phys. Sin. 64 224202 (in Chinese) [庄煜阳, 周雯, 季珂, 陈鹤鸣 2015 物理学报 64 224202]

    [21]

    Zhao X T, Zheng Y, Han Y, Zhou G Y, Hou Z Y, Shen J P, Wang C, Hou L T 2013 Acta Phys. Sin. 62 064215 (in Chinese) [赵兴涛, 郑义, 韩颖, 周桂耀, 侯峙云, 沈建平, 王春, 侯蓝田 2013 物理学报 62 064215]

    [22]

    Yang P L, Dai S X, Yi C S, Zhang P Q, Wang X S, Wu Y H, Yu Y S, Lin C G 2014 Acta Phys. Sin. 63 014210 (in Chinese) [杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生, 林常规 2014 物理学报 63 014210]

    [23]

    Zhang Z M, Wu B, Liu Y J, Jiang L, Mi N, Wang X S, Liu Z J, Liu S, Pan Z H, Nie Q H, Dai S X 2016 Acta Phys. Sin. 65 124205 (in Chinese) [赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋 2016 物理学报 65 124205]

    [24]

    Chen P Z, Hou G F, Suo S, Ni D, Zhang J J, Zhang X D, Zhao Y 2014 Acta Phys. Sin. 63 128801 (in Chinese) [陈培专, 侯国付, 索松, 倪牮, 张建军, 张晓丹, 赵颖 2014 物理学报 63 128801]

    [25]

    Gao Y F, Shi J M, Zhao D P, Xu B 2012 Infrared Laser Eng. 41 970 (in Chinese) [高永芳, 时家明, 赵大鹏, 许波 2012 红外与激光工程 41 970]

    [26]

    Arpin K A, Losego M D, Cloud A N, Ning H L, Mallek J, Sergeant P N, Zhu L X, Yu Z F, Kalanyan B, Fan S H, Braun P V 2013 Nat. Commun. 4 8

    [27]

    Zhang W, Xu G, Zhang J, Wang H, Hou H 2014 Opt. Mater. 37 343

    [28]

    Li J, Ye H, Wei M L 2010 Acta Armamentarii 31 1426 (in Chinese) [李进, 叶宏, 韦孟柳 2010 兵工学报 31 1426]

    [29]

    Li W S, Zhang Q, Huang H M, Fu Y H 2012 Infrared Laser Eng. 41 2578 (in Chinese) [李文胜, 张琴, 黄海铭, 付艳华 2012 红外与激光工程 41 2578]

    [30]

    Zhang M, Yang X J, Liu M Y 2009 J. Academy of Armored Force Engineering 23 89 (in Chinese) [张民, 杨小静, 刘名扬 2009 装甲兵工程学院学报 23 89]

    [31]

    Zhang W, Xu G, Shi X, Ma H, Li L 2015 Photonic Nanostruct. 14 46

    [32]

    Wang Z, Cheng Y, Nie Y, Wang X, Gong R 2014 J. Appl. Phys. 116 054905

    [33]

    Lin S Y, Fleming J G, Chow E, Bur J, Choi K K 2000 Phys. Rev. B 62 2243

    [34]

    Fleming J G, Lin S Y, Kady I E, Biswas R, Ho K M 2002 Nature 417 52

  • [1] Wang Long, Wang Liu-Ying, Liu Gu, Tang Xiu-Jian, Ge Chao-Qun, Wang Bin, Xu Ke-Jun, Wang Xin-Jun. Design of high transparent infrared stealth thin films based on FTO/Ag/FTO structure. Acta Physica Sinica, 2023, 72(24): 244202. doi: 10.7498/aps.72.20231084
    [2] Cao Ya-Qing, Huang Huo-Lin, Sun Zhong-Hao, Li Fei-Yu, Bai Hong-Liang, Zhang Hui, Sun Nan, Yung C. Liang. Demonstration of wide-bandgap GaN-based heterojunction vertical Hall sensors for high-temperature magnetic field detection. Acta Physica Sinica, 2019, 68(15): 158502. doi: 10.7498/aps.68.20190413
    [3] Chen Min, Wan Ting, Wang Zheng, Luo Zhao-Ming, Liu Jing. One-dimensional magnetic photonic crystal structures with wide absolute bandgaps. Acta Physica Sinica, 2017, 66(1): 014204. doi: 10.7498/aps.66.014204
    [4] Wu Sai, Li Wei-Bin, Shi Feng, Jiang Shi-Chun, Lan Ding, Wang Yu-Ren. Observation of colloidal particle deposition during the confined droplet evaporation process. Acta Physica Sinica, 2015, 64(9): 096101. doi: 10.7498/aps.64.096101
    [5] Sun Liang-Kui, Yu Zhe-Feng, Huang Jie. Research and design of directional heat transmission structure based on metamaterial. Acta Physica Sinica, 2015, 64(8): 084401. doi: 10.7498/aps.64.084401
    [6] Sun Liang-Kui, Yu Zhe-Feng, Huang Jie. Design of two-dimensional plate directional heat transmission structure based on meta materials. Acta Physica Sinica, 2015, 64(22): 224401. doi: 10.7498/aps.64.224401
    [7] Zhou Nian-Jie, Huang Wei-Qi, Miao Xin-Jian, Wang Gang, Dong Tai-Ge, Huang Zhong-Mei, Yin Jun. Effects of quantum confinement and symmetry on the silicon photonic crystal band gap. Acta Physica Sinica, 2015, 64(6): 064208. doi: 10.7498/aps.64.064208
    [8] Sheng Juan-Juan, He Xing-Dao, Liu Bin, Li Shu-Jing. Photonic band gaps of two-dimensional hexagon-lattice photonic crystals based on Taiji-shaped dielectric rods. Acta Physica Sinica, 2013, 62(8): 084213. doi: 10.7498/aps.62.084213
    [9] Wang Hui-Qin, Gong Qi-Huang. Discussion on the problem of random media matching with the PCF for RFL. Acta Physica Sinica, 2013, 62(21): 214202. doi: 10.7498/aps.62.214202
    [10] Li Chun-Zao, Liu Shao-Bin, Kong Xiang-Kun, Bian Bo-Rui, Zhang Xue-Yong. Effects of external magnetic field and temperature on low frequency photonic band width in cryogenic superconducting photonic crystals. Acta Physica Sinica, 2012, 61(7): 075203. doi: 10.7498/aps.61.075203
    [11] Yuan Gui-Fang, Han Li-Hong, Yu Zhong-Yuan, Liu Yu-Min, Lu Peng-Fei. Two-dimensional photonic crystal band gap characteristics. Acta Physica Sinica, 2011, 60(10): 104214. doi: 10.7498/aps.60.104214
    [12] Yang Yi-Biao, Wang Shuan-Feng, Li Xiu-Jie, Wang Yun-Cai, Liang Wei. Band gap characteristics of two-dimensional photonic crystals made of a triangular lattice of dielectric rods. Acta Physica Sinica, 2010, 59(7): 5073-5077. doi: 10.7498/aps.59.5073
    [13] Ren Xiao-Bin, Zhai Tian-Rui, Ren Zhi, Lin Jing, Zhou Jing, Liu Da-He. The effect of nonlinear exposure on bandgap of three-dimensional holographic photonic crystal. Acta Physica Sinica, 2009, 58(5): 3208-3213. doi: 10.7498/aps.58.3208
    [14] Cheng Xu-Pan, Cao Quan-Xi. Study of complete bandgap of two-dimensional columnar photonic crystals. Acta Physica Sinica, 2008, 57(5): 3249-3253. doi: 10.7498/aps.57.3249
    [15] Liu Huan, Yao Jian-Quan, Li En-Bang, Wen Wu-Qi, Zhang Qiang, Wang Peng. Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures. Acta Physica Sinica, 2006, 55(1): 230-237. doi: 10.7498/aps.55.230
    [16] Zhou Mei, Chen Xiao-Shuang, Xu Jing, Zeng Yong, Wu Yan-Rui, Lu Wei, Wang Lian-Wei, Chen Yu. Photonic band gap of two-dimensional photonic crystal based on silicon in mid-infrared. Acta Physica Sinica, 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [17] Li Ming-Yu, Gu Pei-Fu. Optimal design of two-dimensional photonic crystal polarization splitters. Acta Physica Sinica, 2005, 54(5): 2358-2363. doi: 10.7498/aps.54.2358
    [18] Wang Jing, Yuan Chun-Wei, Huang Zhong-Bing, Tang Fang-Qiong. Synthesis and optical properties of durable opal photonic crystals with high crystalline quality. Acta Physica Sinica, 2004, 53(9): 3054-3058. doi: 10.7498/aps.53.3054
    [19] HE YONG-JUN, SU HUI-MIN, TANG FANG-QIONG, DONG PENG, WANG HE-ZHOU. COLLOIDAL AMORPHOUS CRYSTAL WITH A QUASI-COMPLETE PHOTONIC BAND GAP . Acta Physica Sinica, 2001, 50(5): 892-896. doi: 10.7498/aps.50.892
    [20] ZHENG JUN, YE ZHI-CHENG, TANG WEI-GUO, LIU DA-HE. PHOTONIC FORBIDDEN BAND IN VOLUME HOLOGRAMS. Acta Physica Sinica, 2001, 50(11): 2144-2148. doi: 10.7498/aps.50.2144
Metrics
  • Abstract views:  6396
  • PDF Downloads:  374
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2016
  • Accepted Date:  21 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回