Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Atomic-scale simulation study of structural changes of Fe-Cu binary system containing Cu clusters embedded in the Fe matrix during heating

Zheng Zhi-Xiu Zhang Lin

Citation:

Atomic-scale simulation study of structural changes of Fe-Cu binary system containing Cu clusters embedded in the Fe matrix during heating

Zheng Zhi-Xiu, Zhang Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Nano-size Cu precipitates are the main products of irradiation embrittlement of nuclear reactor pressure vessel steels. Molecular dynamics simulation within the framework of embedded atom method is performed to study atomic packing change in Fe-Cu binary system, where the small Cu clusters are embedded in the crystal body centered cubic (BCC) Fe lattices. As the temperature increases, atomic packing change occurs in the Fe-Cu binary system. The mean square displacement of Cu atom, pair distribution function of the Cu atoms, and the atomic density profile along the radial direction are calculated. The atom packing structures in pure Cu region, Fe-Cu interface region, and pure Fe matrix are analyzed. The simulation results show that the packing structures in the Cu cluster and the Fe matrix are greatly affected by the sizes of these clusters and the volume of the Fe matrix containing these clusters. The structural changes present apparent differences, for the Fe matrixes contain these confined Cu clusters with different atom numbers during heating. As the Fe matrix can only provide small space to accommodate the Cu atoms, packing patterns in many Cu atoms are disordered for the Febulk-Cu135 system. In this binary system, strain region in the Fe matrix is adjacent to the Cu cluster. In the meantime, there are a lot of vacancy defects and strain regions in the matrix. For the Febulk-Cu141 system, although the Cu cluster contains more atoms, the Fe matrix can accommodate Cu atoms in a larger space, and the majority of these Cu atoms are located at the BCC crystal lattices. With increasing the temperature, the changes can be observed that the number of the strain regions decrease, whereas the sizes of some strain regions increase.
      Corresponding author: Zhang Lin, zhanglin@imp.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51171044, 51671051), the Natural Science Foundation of Liaoning Province, China (Grant No. 2015020207), and the Fundamental Research Fund for the Central Universities, China (Grant No. N140504001).
    [1]

    Xu L Y 1997 Power Eng. 17 7 (in Chinese) [许连义 1997 动力工程 17 7]

    [2]

    Li C L, Zhang M Q 2008 Mater. Rev. 22 65 (in Chinese) [李承亮, 张明乾 2008 材料导报 22 65]

    [3]

    Yang W D 2006 Nuclear Reactor Materials (Beijing: Atom Energy Press) p114 (in Chinese) [杨文斗 2006反应堆材料学 (北京: 原子能出版社) 第114页]

    [4]

    Qian G, Gonzlez-Albuixech V F, Niffenegger M 2014 Nucl. Eng. Des. 270 312

    [5]

    Nagai Y, Tang Z, Hassegawa M, Kanai T, Saneyasu M 2001 Phys. Rev. B 63 134110

    [6]

    Odette G R, Lucas G E 2001 JOM-Journal of the Minerals Materials Society 53 18

    [7]

    Isheim D, Kolli R P, Fine M E, Seidman D N 2006 Scr. Mater. 55 35

    [8]

    Odette G R, Wirth B D, Bacon D J, Ghoniem N M 2001 MRS Bull. 26 176

    [9]

    Styman P D, Hyde J M, Wilford K, Morley A, Smith G D W 2012 Prog. Nucl. Energy 57(S1) 86

    [10]

    Xu G, Chu D F, Cai L L, Zhou B X, Wang W, Peng J C 2011 Acta Metallurgica Sin. 47 905 (in Chinese) [徐刚, 楚大锋, 蔡琳玲, 周邦新, 王伟, 彭剑超 2011 金属学报 47 905]

    [11]

    Xu G, Cai L L, Feng L, Zhou B X, Liu W Q, Wang J A 2012 Acta Metallurgica Sin. 48 789 (in Chinese) [徐刚, 蔡琳玲, 冯柳, 周邦新, 刘文庆, 王均安 2012 金属学报 48 789]

    [12]

    Wang W, Zhu J J, Lin M D, Zhou B X, Liu W Q 2010 J. Univ. Sci. Eng. Beijing 32 39 (in Chinese) [王伟, 朱娟娟, 林民东, 周邦新, 刘文庆 2010 北京科技大学学报 32 39]

    [13]

    Auger P, Pareige P, Welzel S, Duysen J C V 2000 J. Nucl. Mater. 280 331

    [14]

    Kocik J, Keilova E, Cizek J, Prochazka I 2002 J. Nucl. Mater. 303 52

    [15]

    Isheim D, Gagliano M S, Fine M E, Seidman D N 2006 Acta Mater. 54 841

    [16]

    Kolli R P, Wojes R M, Zaucha S, Seidman D N 2008 Int. J. Mater. Res. 99 513

    [17]

    Osetsky Y N, Serra A 1997 Philos. Mag. A 75 1097

    [18]

    Ackland G J, Bacon D J, Calder A F, Harry T 1997 Philos. Mag. A 75 713

    [19]

    Ludwig M, Farkas D, Pedraza D, Schmauder S 1998 Modell. Simul. Mater. Sci. Eng. 6 19

    [20]

    Pasianot R C, Malerba L 2007 J. Nucl. Mater. 360 118

    [21]

    Zhang L, Fan Q N 2016 Indian J. Phys. 90 9

    [22]

    Zhang L 2016 Phys. Chem. Chem. Phys. 18 7310

    [23]

    Zhang L 2016 J. Phys. Soc. Jpn. 85 054602

    [24]

    Marian J, Wirth B D, Odette G R, Perlado J M 2004 Comput. Mater. Sci. 31 347

    [25]

    Othen P J, Jerkins M L, Smith G D W 1994 Philos. Mag. A 70 1

    [26]

    Othen P J, Jerkins M L, Smith G D W, Phythian W 1991 Philos. Mag. A 64 383

    [27]

    Hu L J, Zhao S J, Lu Q D 2012 Mater. Sci. Eng. A 556 140

    [28]

    You L J, Hu L J, Xie Y P, Zhao S J 2016 Comput. Mater. Sci. 118 236

    [29]

    Zhu L S, Zhao S J 2014 Chin. Phys. B 23 063601

    [30]

    Bonny G, Pasianot R C, Malerba L 2009 Modell. Simul. Mater. Sci. Eng. 17 025010

  • [1]

    Xu L Y 1997 Power Eng. 17 7 (in Chinese) [许连义 1997 动力工程 17 7]

    [2]

    Li C L, Zhang M Q 2008 Mater. Rev. 22 65 (in Chinese) [李承亮, 张明乾 2008 材料导报 22 65]

    [3]

    Yang W D 2006 Nuclear Reactor Materials (Beijing: Atom Energy Press) p114 (in Chinese) [杨文斗 2006反应堆材料学 (北京: 原子能出版社) 第114页]

    [4]

    Qian G, Gonzlez-Albuixech V F, Niffenegger M 2014 Nucl. Eng. Des. 270 312

    [5]

    Nagai Y, Tang Z, Hassegawa M, Kanai T, Saneyasu M 2001 Phys. Rev. B 63 134110

    [6]

    Odette G R, Lucas G E 2001 JOM-Journal of the Minerals Materials Society 53 18

    [7]

    Isheim D, Kolli R P, Fine M E, Seidman D N 2006 Scr. Mater. 55 35

    [8]

    Odette G R, Wirth B D, Bacon D J, Ghoniem N M 2001 MRS Bull. 26 176

    [9]

    Styman P D, Hyde J M, Wilford K, Morley A, Smith G D W 2012 Prog. Nucl. Energy 57(S1) 86

    [10]

    Xu G, Chu D F, Cai L L, Zhou B X, Wang W, Peng J C 2011 Acta Metallurgica Sin. 47 905 (in Chinese) [徐刚, 楚大锋, 蔡琳玲, 周邦新, 王伟, 彭剑超 2011 金属学报 47 905]

    [11]

    Xu G, Cai L L, Feng L, Zhou B X, Liu W Q, Wang J A 2012 Acta Metallurgica Sin. 48 789 (in Chinese) [徐刚, 蔡琳玲, 冯柳, 周邦新, 刘文庆, 王均安 2012 金属学报 48 789]

    [12]

    Wang W, Zhu J J, Lin M D, Zhou B X, Liu W Q 2010 J. Univ. Sci. Eng. Beijing 32 39 (in Chinese) [王伟, 朱娟娟, 林民东, 周邦新, 刘文庆 2010 北京科技大学学报 32 39]

    [13]

    Auger P, Pareige P, Welzel S, Duysen J C V 2000 J. Nucl. Mater. 280 331

    [14]

    Kocik J, Keilova E, Cizek J, Prochazka I 2002 J. Nucl. Mater. 303 52

    [15]

    Isheim D, Gagliano M S, Fine M E, Seidman D N 2006 Acta Mater. 54 841

    [16]

    Kolli R P, Wojes R M, Zaucha S, Seidman D N 2008 Int. J. Mater. Res. 99 513

    [17]

    Osetsky Y N, Serra A 1997 Philos. Mag. A 75 1097

    [18]

    Ackland G J, Bacon D J, Calder A F, Harry T 1997 Philos. Mag. A 75 713

    [19]

    Ludwig M, Farkas D, Pedraza D, Schmauder S 1998 Modell. Simul. Mater. Sci. Eng. 6 19

    [20]

    Pasianot R C, Malerba L 2007 J. Nucl. Mater. 360 118

    [21]

    Zhang L, Fan Q N 2016 Indian J. Phys. 90 9

    [22]

    Zhang L 2016 Phys. Chem. Chem. Phys. 18 7310

    [23]

    Zhang L 2016 J. Phys. Soc. Jpn. 85 054602

    [24]

    Marian J, Wirth B D, Odette G R, Perlado J M 2004 Comput. Mater. Sci. 31 347

    [25]

    Othen P J, Jerkins M L, Smith G D W 1994 Philos. Mag. A 70 1

    [26]

    Othen P J, Jerkins M L, Smith G D W, Phythian W 1991 Philos. Mag. A 64 383

    [27]

    Hu L J, Zhao S J, Lu Q D 2012 Mater. Sci. Eng. A 556 140

    [28]

    You L J, Hu L J, Xie Y P, Zhao S J 2016 Comput. Mater. Sci. 118 236

    [29]

    Zhu L S, Zhao S J 2014 Chin. Phys. B 23 063601

    [30]

    Bonny G, Pasianot R C, Malerba L 2009 Modell. Simul. Mater. Sci. Eng. 17 025010

  • [1] Xing He-Wei, Chen Zhan-Xiu, Yang Li, Su Yao, Li Yuan-Hua, Hu-he Cang. Molecular dynamics simulation of effect of non-condensable gases on heat transfer of water molecule flow in nanochannels. Acta Physica Sinica, 2024, 73(9): 094701. doi: 10.7498/aps.73.20240192
    [2] Wen Da-Dong, Qi Qing-Hua, Huang Xin-Xin, Yi Zhou, Deng Yong-He, Tian Ze-An, Peng Ping. Heredity of clusters in liquid Ta rapid solidification process and its correlation with local symmetry. Acta Physica Sinica, 2023, 72(24): 246101. doi: 10.7498/aps.72.20231153
    [3] Jiang Yuan-Qi. Simulation and analysis of melting behavior of local atomic structure of refractory metals vanadium. Acta Physica Sinica, 2020, 69(20): 203601. doi: 10.7498/aps.69.20200185
    [4] Gao Ming, Deng Yong-He, Wen Da-Dong, Tian Ze-An, Zhao He-Ping, Peng Ping. Evolution characteristics and hereditary mechanisms of clusters in rapidly solidified Pd82Si18 alloy. Acta Physica Sinica, 2020, 69(4): 046401. doi: 10.7498/aps.69.20190970
    [5] Deng Yong-He, Wen Da-Dong, Peng Chao, Wei Yan-Ding, Zhao Rui, Peng Ping. Heredity of icosahedrons: a kinetic parameter related to glass-forming abilities of rapidly solidified Cu56Zr44 alloys. Acta Physica Sinica, 2016, 65(6): 066401. doi: 10.7498/aps.65.066401
    [6] Li Chun-Li, Duan Hai-Ming, Kerem Mardan. Molecular dynamical simulations of the melting properties of Aln(n=13–32) clusters. Acta Physica Sinica, 2013, 62(19): 193104. doi: 10.7498/aps.62.193104
    [7] Chen Ji-Xiang, Qiang Jian-Bing, Wang Qing, Dong Chuang. Defining nearest neighbor clusters in alloy phases using radial distribution of atomic density. Acta Physica Sinica, 2012, 61(4): 046102. doi: 10.7498/aps.61.046102
    [8] Han Xiao-Jing, Wang Yin, Lin Zheng-Zhe, Zhang Wen-Xian, Zhuang Jun, Ning Xi-Jing. Theoretical prediction of the growth probabilities for cluster isomers. Acta Physica Sinica, 2010, 59(5): 3445-3449. doi: 10.7498/aps.59.3445
    [9] Fan Qin-Na, Li Wei, Zhang Lin. Molecular dynamics study of relaxation and local structure changes in a rapidly quenched molten Cu57 cluster. Acta Physica Sinica, 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [10] Liu Jian-Ting, Duan Hai-Ming. Molecular dynamics simulation of structures and melting behaviours of iridium clusters with different potentials. Acta Physica Sinica, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [11] Gao Hao, Liao Long-Zhong, Zhang Zhao-Hui. Experimental investigation on formation of Al-Si clusters and nanocrystals in the segregation of ion-implanted Al on Si(100). Acta Physica Sinica, 2009, 58(1): 427-431. doi: 10.7498/aps.58.427
    [12] Zhang Lin, Xu Song-Ning, Li Wei, Sun Hai-Xia, Zhang Cai-Bei. Structural changes during freezing and coalescing of small sized clusters on atomic scale. Acta Physica Sinica, 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [13] Zhao Qian, Zhang Lin, Qi Yang, Zhang Zong-Ning. Molecular dynamics study of structures of a Cu13 cluster supported on a Cu(001) surface at low temperatures. Acta Physica Sinica, 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [14] Zhang Zong-Ning, Liu Mei-Lin, Li Wei, Geng Chang-Jian, Zhao Qian, Zhang Lin. Molecular dynamics study of freezing a molten Cu55 cluster on Cu(010)surface. Acta Physica Sinica, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [15] Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics study on structural change of a Au959 cluster supported on MgO(100) surface at low temperature. Acta Physica Sinica, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [16] Xu Song-Ning, Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics simulations of a molten Cu55 cluster embedded in face-centred cubic bulk during. Acta Physica Sinica, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [17] Zhou Shi-Yun, Wang Yin, Ning Xi-Jing. A quasi-dynamics method for searching for cluster isomers. Acta Physica Sinica, 2008, 57(1): 387-391. doi: 10.7498/aps.57.387
    [18] Yang Quan-Wen, Zhu Ru-Zeng. Freezing of Cu nanoclusters studied by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [19] Yuan Zhe, He Chun-Long, Wang Xiao-Lu, Liu Hai-Tao, Li Jia-Ming. First-principle molecular dynamics study of clusters:optimum valence bond scheme. Acta Physica Sinica, 2005, 54(2): 628-635. doi: 10.7498/aps.54.628
    [20] LIU JIAN-SHENG, LI RU-XIN, ZHU PIN-PIN, XU ZHI-ZHAN, LIU JING-RU. DYNAMICS OF LARGE-SIZE ATOMIC CLUSTERS IN ULTRA-SHORT HIGH-INTENSITY LASER PULSES. Acta Physica Sinica, 2001, 50(6): 1121-1127. doi: 10.7498/aps.50.1121
Metrics
  • Abstract views:  5168
  • PDF Downloads:  161
  • Cited By: 0
Publishing process
  • Received Date:  29 November 2016
  • Accepted Date:  17 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回