Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analytical channel potential model of amorphous InGaZnO thin-film transistors with synchronized symmetric dual-gate

Qin Ting Huang Sheng-Xiang Liao Cong-Wei Yu Tian-Bao Deng Lian-Wen

Citation:

Analytical channel potential model of amorphous InGaZnO thin-film transistors with synchronized symmetric dual-gate

Qin Ting, Huang Sheng-Xiang, Liao Cong-Wei, Yu Tian-Bao, Deng Lian-Wen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Oxide indium gallium zinc thin film transistor (IGZO TFT) is a promising candidate for mass production of next-generation flat panel display technology with high performance. This is due to many merits of IGZO TFTs, such as high mobility, excellent uniformity over large area, and low cost. In recent years, IGZO TFTs with dual gate structure have attracted enormous attention. Compared with the conventional single gate IGZO TFTs, the dual gate IGZO TFTs have many advantages including increased driving ability, reduced leakage current, and improved reliability for both negative biasing stressing and positive biasing stressing. Although the measurement results of fabricated circuit samples have proven that dual gate IGZO TFTs are beneficial for the integration of digital circuit and active matrix light emitting display with in-array or external compensation schematics, there has been no proper analytic model for dual gate IGZO TFTs to date. As the analytic model is crucial to circuit simulations, there are great difficulties in circuit designs by using dual gate IGZO TFTs. Although there are some similarities between the operating principal of the dual gate IGZO TFTs and that of the dual gate silicon-on-insulator devices, the complexity of conducting mechanism of IGZO TFTs is increased due to the existence of sub-gap density of states (DOS) in the IGZO thin film. In this paper, an analytical channel potential model for IGZO TFT with synchronized symmetric dual gate structure is proposed. Gaussian method and Lambert function are used for solving the Poisson equation. The DOS of IGZO thin film is included in the proposed model. Analytical expressions for the surface potential (S) and central potential (0) of the IGZO film are derived in detail. And the proposed channel potential model is valid for both sub-threshold and above-threshold region of IGZO TFTs. The influences of geometry of dual-gate IGZO TFT, including thickness values of gate oxide layer and IGZO layer, on the device performance are thoroughly discussed. It is found that in the case of small gate-to-source voltage (VGS), as the conducting of IGZO layer is weak, both S and 0 increase linearly with the increase of VGS due to the increase of voltage division between the oxide and IGZO layer. However, the increase of S and 0 starts to saturate once VGS is larger than threshold voltage due to the shielding of electrical field by the induced electron layer of IGZO surface. With the evolution of VGS, the calculated results of S and 0 by using the proposed dual gate IGZO TFT model are in good agreement with the numerical results by technology computer aided design simulation method. Therefore, the proposed model is promising for new IGZO TFT electronics design automation tool development.
      Corresponding author: Huang Sheng-Xiang, hsx351@csu.edu.cn
    • Funds: Project supported by the Science and Technology Project of Hunan Province, China (Grant No. 2015JC3041).
    [1]

    Kim Y, Kim Y, Lee H 2014 J. Dis. Technol. 10 80

    [2]

    Zheng Z, Jiang J, Guo J, Sun J, Yang J 2016 Organic Electron. 33 311

    [3]

    Liu F, Qian C, Sun J, Liu P, Huang Y, Gao Y, Yang J 2016 Appl. Phys. A 122 311

    [4]

    Han D D, Chen Z F, Cong Y Y, Yu W, Zhang X, Wang Y 2016 IEEE Trans. Electron Dev. 63 3360

    [5]

    Cai J, Han D D, Geng Y F, Wang W, Wang L L, Zhang S D, Wang Y 2013 IEEE Trans. Electron Dev. 60 2432

    [6]

    Jeon C, Mativenga M, Geng D, Jang J 2016 SID Symposium (San Francisco: Wiley) 47 65

    [7]

    Smith J T, Shah S S, Goryll M, Stowell J R, Allee D R 2014 IEEE Sensors J. 14 937

    [8]

    Tai Y H, Chou L S, Chiu H L, Chen B C 2012 IEEE Electron Dev. Lett. 33 393

    [9]

    Kaneyasu M, Toyotaka K, Shishido H, Isa T, Eguchi S, Miyake H, Hirakata Y, Yamazaki S, Dobashi M, Fujiwara C 2015 J. Soc. Inform. Dis. 46 857

    [10]

    Baek G, Bie L, Abe K, Kumomi H, Kanicki J 2014 IEEE Trans. Electron Dev. 61 1109

    [11]

    Hong S, Lee S, Mativenga M, Jang J 2014 IEEE Electron Dev. Lett. 35 93

    [12]

    He X, Wang L Y, Xiao X, Deng W, Zhang L T, Chan M S, Zhang S D 2014 IEEE Electron Dev. Lett. 35 927

    [13]

    Chang K J, Chen W T, Chang W C, Chen W P, Nien C C, Shih T H, Lu H H, Lin Y 2015 SID Symposium (San Jose: Wiley) 46 1203

    [14]

    Baudrand H, Ahmed A A 1984 IEEE Electron. Lett. 20 33

    [15]

    Young K K 1989 IEEE Trans. Electron Dev. 36 399

    [16]

    Yuan T 2000 IEEE Electron Dev. Lett. 21 245

    [17]

    Ortiz-Conde A, Garca-Snchez F J, Malobabic S 2005 IEEE Trans. Electron Dev. 52 1669

    [18]

    Wang C C, Hu Z J, He X, Liao C W, Zhang S D 2016 IEEE Trans. Electron Dev. 63 3800

    [19]

    Krner W, Urban D F, Elssser C 2013 J. Appl. Phys. 114 163704

    [20]

    Torricelli F, ONeill K, Gelinck G H, Myny K, Genoe J, Cantatore E 2012 IEEE Trans. Electron Dev. 59 1520

    [21]

    Alvarado J, Iiguez B, Estrada M, Flandre D, Cerdeira A 2010 Int. J. Number. Model. Electron. Netw. Dev. Fields 23 88

    [22]

    Hoorfar A, Hassani M 2008 J. Inequalities Pure Appl. Math. 9 51

    [23]

    Enz C C, Krummenacher F, Vittoz E A 1995 Analog Integr. Circuits Process. 8 83

    [24]

    Chatterjee A, Machala C F, Yang P 1995 IEEE Trans. Computer-Aided Design Integr. Syst. 14 1193

  • [1]

    Kim Y, Kim Y, Lee H 2014 J. Dis. Technol. 10 80

    [2]

    Zheng Z, Jiang J, Guo J, Sun J, Yang J 2016 Organic Electron. 33 311

    [3]

    Liu F, Qian C, Sun J, Liu P, Huang Y, Gao Y, Yang J 2016 Appl. Phys. A 122 311

    [4]

    Han D D, Chen Z F, Cong Y Y, Yu W, Zhang X, Wang Y 2016 IEEE Trans. Electron Dev. 63 3360

    [5]

    Cai J, Han D D, Geng Y F, Wang W, Wang L L, Zhang S D, Wang Y 2013 IEEE Trans. Electron Dev. 60 2432

    [6]

    Jeon C, Mativenga M, Geng D, Jang J 2016 SID Symposium (San Francisco: Wiley) 47 65

    [7]

    Smith J T, Shah S S, Goryll M, Stowell J R, Allee D R 2014 IEEE Sensors J. 14 937

    [8]

    Tai Y H, Chou L S, Chiu H L, Chen B C 2012 IEEE Electron Dev. Lett. 33 393

    [9]

    Kaneyasu M, Toyotaka K, Shishido H, Isa T, Eguchi S, Miyake H, Hirakata Y, Yamazaki S, Dobashi M, Fujiwara C 2015 J. Soc. Inform. Dis. 46 857

    [10]

    Baek G, Bie L, Abe K, Kumomi H, Kanicki J 2014 IEEE Trans. Electron Dev. 61 1109

    [11]

    Hong S, Lee S, Mativenga M, Jang J 2014 IEEE Electron Dev. Lett. 35 93

    [12]

    He X, Wang L Y, Xiao X, Deng W, Zhang L T, Chan M S, Zhang S D 2014 IEEE Electron Dev. Lett. 35 927

    [13]

    Chang K J, Chen W T, Chang W C, Chen W P, Nien C C, Shih T H, Lu H H, Lin Y 2015 SID Symposium (San Jose: Wiley) 46 1203

    [14]

    Baudrand H, Ahmed A A 1984 IEEE Electron. Lett. 20 33

    [15]

    Young K K 1989 IEEE Trans. Electron Dev. 36 399

    [16]

    Yuan T 2000 IEEE Electron Dev. Lett. 21 245

    [17]

    Ortiz-Conde A, Garca-Snchez F J, Malobabic S 2005 IEEE Trans. Electron Dev. 52 1669

    [18]

    Wang C C, Hu Z J, He X, Liao C W, Zhang S D 2016 IEEE Trans. Electron Dev. 63 3800

    [19]

    Krner W, Urban D F, Elssser C 2013 J. Appl. Phys. 114 163704

    [20]

    Torricelli F, ONeill K, Gelinck G H, Myny K, Genoe J, Cantatore E 2012 IEEE Trans. Electron Dev. 59 1520

    [21]

    Alvarado J, Iiguez B, Estrada M, Flandre D, Cerdeira A 2010 Int. J. Number. Model. Electron. Netw. Dev. Fields 23 88

    [22]

    Hoorfar A, Hassani M 2008 J. Inequalities Pure Appl. Math. 9 51

    [23]

    Enz C C, Krummenacher F, Vittoz E A 1995 Analog Integr. Circuits Process. 8 83

    [24]

    Chatterjee A, Machala C F, Yang P 1995 IEEE Trans. Computer-Aided Design Integr. Syst. 14 1193

  • [1] Su Le, Wang Cai-Lin, Tan Zai-Chao, Luo Yin, Yang Wu-Hua, Zhang Chao. Establishment of Analytical Model for the Gate to Source Capacitance of Power MOSFET. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240144
    [2] Zhang Zhao-Quan, Shi Peng-Peng, Gou Xiao-Fan. Analytical model of magnetic Barkhausen stress test of ferromagnetic plates. Acta Physica Sinica, 2022, 71(9): 097501. doi: 10.7498/aps.71.20212253
    [3] Qin Ting, Huang Sheng-Xiang, Liao Cong-Wei, Yu Tian-Bao, Luo Heng, Liu Sheng, Deng Lian-Wen. Floating gate effect in amorphous InGaZnO thin-film transistor. Acta Physica Sinica, 2018, 67(4): 047302. doi: 10.7498/aps.67.20172325
    [4] Shao Yan, Ding Shi-Jin. Effects of hydrogen impurities on performances and electrical reliabilities of indium-gallium-zinc oxide thin film transistors. Acta Physica Sinica, 2018, 67(9): 098502. doi: 10.7498/aps.67.20180074
    [5] Zhang Qing, Wu Xin-Jun. Analytical modeling for the plate with a flat-bottom hole based on the reflection and transmission theory in pulsed eddy current testing. Acta Physica Sinica, 2017, 66(3): 038102. doi: 10.7498/aps.66.038102
    [6] Ning Hong-Long, Hu Shi-Ben, Zhu Feng, Yao Ri-Hui, Xu Miao, Zou Jian-Hua, Tao Hong, Xu Rui-Xia, Xu Hua, Wang Lei, Lan Lin-Feng, Peng Jun-Biao. Improved performance of the amorphous indium-gallium-zinc oxide thin film transistor with Cu-Mo source/drain electrode. Acta Physica Sinica, 2015, 64(12): 126103. doi: 10.7498/aps.64.126103
    [7] Li Shi-Song, Zhang Zhong-Hua, Zhao Wei, Huang Song-Ling, Fu Zhuang. Analytical model of electrostatic force generated by edge effect of a Kelvin capacitor based on conformal transformation. Acta Physica Sinica, 2015, 64(6): 060601. doi: 10.7498/aps.64.060601
    [8] Zhang Na, Cao Meng, Cui Wan-Zhao, Hu Tian-Cun, Wang Rui, Li Yun. Analytical model of secondary electron yield from metal surface with regular structures. Acta Physica Sinica, 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [9] Wu Liang-Hai, Zhang Jun, Fan Zhi-Guo, Gao Jun. An analytical model for skylight polarization pattern with multiple scattering. Acta Physica Sinica, 2014, 63(11): 114201. doi: 10.7498/aps.63.114201
    [10] Han Ming-Jun, Ke Dao-Ming, Chi Xiao-Li, Wang Min, Wang Bao-Tong. A 2D semi-analytical model for the potential distribution of ultra-short channel MOSFET. Acta Physica Sinica, 2013, 62(9): 098502. doi: 10.7498/aps.62.098502
    [11] Li Shuai-Shuai, Liang Chao-Xu, Wang Xue-Xia, Li Yan-Hui, Song Shu-Mei, Xin Yan-Qing, Yang Tian-Lin. The preparation and characteristics research of high mobility amorphous indium gallium zinc oxide thin-film transistors. Acta Physica Sinica, 2013, 62(7): 077302. doi: 10.7498/aps.62.077302
    [12] Zhou Chun-Yu, Zhang He-Ming, Hu Hui-Yong, Zhuang Yi-Qi, Lü Yi, Wang Bin, Li Yu-Chen. Analytical modeling for drain current of strained Si NMOSFET. Acta Physica Sinica, 2013, 62(23): 237103. doi: 10.7498/aps.62.237103
    [13] Liang Jing-Hui, Zhang Xiao-Feng, Qiao Ming-Zhong, Xia Yi-Hui, Li Geng, Chen Jun-Quan. Analytic model of discrete random magnetizing Halbach PM motor. Acta Physica Sinica, 2013, 62(15): 150501. doi: 10.7498/aps.62.150501
    [14] Su Li-Na, Gu Xiao-Feng, Qin Hua, Yan Da-Wei. Analytical I-V model and numerical analysis of single electron transistor. Acta Physica Sinica, 2013, 62(7): 077301. doi: 10.7498/aps.62.077301
    [15] Liu Bao-Jun, Cai Li. Analytical model of single event crosstalk in near space. Acta Physica Sinica, 2012, 61(19): 196103. doi: 10.7498/aps.61.196103
    [16] Li Cong, Zhuang Yi-Qi, Han Ru, Zhang Li, Bao Jun-Lin. Analytical modeling of asymmetric HALO-doped surrounding-gate MOSFET with gate overlapped lightly-doped drain. Acta Physica Sinica, 2012, 61(7): 078504. doi: 10.7498/aps.61.078504
    [17] Cao Lei, Liu Hong-Xia, Wang Guan-Yu. Study of modeling for hetero-materiel gate fully depleted SSDOI MOSFET. Acta Physica Sinica, 2012, 61(1): 017105. doi: 10.7498/aps.61.017105
    [18] Liu Jing-Wang, Du Zhen-Hui, Li Jin-Yi, Qi Ru-Bin, Xu Ke-Xin. Analytical model for the tuning characteristics of static, dynamic, and transient behaviors in temperature and injection current of DFB laser diodes. Acta Physica Sinica, 2011, 60(7): 074213. doi: 10.7498/aps.60.074213
    [19] Luan Su-Zhen, Liu Hong-Xia, Jia Ren-Xu, Cai Nai-Qiong. 2-D analytical modeling of dual material gate fully depleted SOI MOSFET with high-k dielectric. Acta Physica Sinica, 2008, 57(6): 3807-3812. doi: 10.7498/aps.57.3807
    [20] Chen Wei-Bing, Xu Jing-Ping, Zou Xiao, Li Yan-Ping, Xu Sheng-Guo, Hu Zhi-Fu. Analytic tunneling-current model of small-scale MOSFETs. Acta Physica Sinica, 2006, 55(10): 5036-5040. doi: 10.7498/aps.55.5036
Metrics
  • Abstract views:  5659
  • PDF Downloads:  297
  • Cited By: 0
Publishing process
  • Received Date:  18 January 2017
  • Accepted Date:  21 February 2017
  • Published Online:  05 May 2017

/

返回文章
返回