Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structure evalution of electron irradiated borosilicate glass simuluated by molecular dynamics

Yuan Wei Peng Hai-Bo Du Xin Lü Peng Shen Yang-Hao Zhao Yan Chen Liang Wang Tie-Shan

Citation:

Structure evalution of electron irradiated borosilicate glass simuluated by molecular dynamics

Yuan Wei, Peng Hai-Bo, Du Xin, Lü Peng, Shen Yang-Hao, Zhao Yan, Chen Liang, Wang Tie-Shan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Sodium borosilicate (NBS) glass is one of the candidate materials for high-level waste glass immobilization. A large number of experiments are performed to study the effect of irradiation by electrons or heavy ions on this type of glass. However, only a few researches of numerically investigating the effect of irradiated NBS glass have been reported. Furthermore those studies mainly focus on heavy-ion irradiation, and none of them is devoted to simulating the effects of electron irradiation on glass that has been irradiated by electrons, especially for structure evolution. In this paper, we propose a novel method of using molecular dynamics (MD) to simulate structure evolution of electron-irradiated NBS glass with compositions of 67.73% SiO2, 18.04% B2O3 and 14.23% Na2O, in mol.%. This method is based on the previous experimental results of Raman spectra and mechanism of structure transformation in irradiated glass. The Raman spectra confirm that the peak indicating the existence of molecular oxygen appears at 1550 cm-1 in irradiated glass. It is assumed that those oxygen atoms do not have any interactions with other adjacent atoms nor participate in the glass network recombination. This assumption is reasonable, for molecular oxygen mainly exists as dissolved oxygen instead of oxygen bubble and is located at interstice of glass network. Thus the presence of molecular oxygen does not have any effect on glass network structure. Then irradiated glass can be obtained by gradually randomly removing a certain number of oxygen atoms from the pristine glass. The glass with removed oxygen atoms is regarded as an irradiated glass which is considered as one irradiated by electrons in experiments. The results derived from MD simulation include average SiOSi bond angle, ring size distribution, sodium profile, evolution of [BO4] units, and [BO3] units. With the increase of removed oxygen atoms, the average bond angle of SiOSi decreases and the number of small rings gradually increases in irradiated glass. Besides, sodium phase separation is observed obviously after extensively removing oxygen. Moreover, in the process of removing oxygen, some [BO4] units transform into [BO3] units, and the transformation process reaches a saturation state finally. Those effects derived from MD such as decrease of SiOSi bond angle, increase of small rings in number, phase separation of sodium and structure change between [BO4] units and [BO3] units, are consistent with those of glass irradiated by electrons in previous experiments. Therefore, the method proposed in this paper will provide a new perspective to understand the mechanism of structure evolution in sodium borosilicate glass after being irradiated by electrons.
      Corresponding author: Wang Tie-Shan, tswang@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11505085, 11505084) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. lzujbky-2015-68, lzujbky-2016-37).
    [1]

    Ewing R C, Weber W J, Clinard Jr F W 1995 Prog. Nucl. Energ. 29 63

    [2]

    Boizot B, Petite G, Ghaleb D, Reynard B, Calas G 1999 J. Non-Cryst. Solids 243 268

    [3]

    Ollier N, Boizot B, Reynard B, Ghaleb D, Petite G 2005 J. Nucl. Mater. 340 209

    [4]

    Jiang N, Silcox J 2004 J. Non-Cryst. Solids 342 12

    [5]

    Delaye J M, Ghaleb D 1996 Mat. Sci. Eng. B 37 232

    [6]

    Delaye J M, Ghaleb D 1997 J. Nucl. Mater. 244 22

    [7]

    Kieu L H, Delaye J M, Cormier L, Stolz C 2011 J. Non-Cryst. Solids 357 3313

    [8]

    Delaye J M, Peuget S, Calas G, Galoisy L 2014 Nucl. Instrum. Meth. B 326 256

    [9]

    Kilymis D A, Delaye J M 2014 J. Non-Cryst. Solids 401 147

    [10]

    Woodcock L V 1976 J. Chem. Phys. 65 1565

    [11]

    Soules T F 1979 J. Chem. Phys. 71 4570

    [12]

    Soules T F, Varshneya A K 1981 J. Am. Ceram. Soc. 64 145

    [13]

    Stoch P, Stoch A 2015 J. Non-Cryst. Solids 411 106

    [14]

    Nan S, Yuan W, Wang T S, Peng H B, Chen L, Du X, Zhang D F, L P 2016 High Pow. Laser Part. Beam 28 40 (in Chinese) [南帅, 袁伟, 王铁山, 彭海波, 陈亮, 杜鑫, 张多飞, 律鹏 2016 强激光与粒子束 28 40]

    [15]

    Zhong J, Bray P J 1989 J. Non-Cryst. Solids 111 67

    [16]

    Yun Y H, Bray P J 1978 J. Non-Cryst. Solids 30 45

    [17]

    Dell W J, Bray P J, Xiao S Z 1983 J. Non-Cryst. Solids 58 1

    [18]

    Todorov I T 2006 J. Mater. Chem. 16 1911

    [19]

    Roux S L, Jund P 2010 Comp. Mater. Sci. 49 70

    [20]

    King S V 1967 Natuer 213 1112

    [21]

    Chen L, Wang T S, Zhang G F, Yang K J, Peng H B, Zhang L M 2013 Chin. Phys. B 22 126101

    [22]

    Chen L, Zhang D F, L P, Zhang J D, Du X, Yuan W, Nan S, Zhu Z H, Wang T S 2016 J. Non-Cryst. Solids 448 6

    [23]

    Imai H, Arai K, Isoya J, Hosono H, Abe Y, Imagawa H 1993 Phys. Rev. B 48 3116

    [24]

    Yang K J, Wang T S, Zhang G F, Peng H B, Chen L, Zhang L M, Li C X, Tian F, Yuan W 2013 Nucl. Instrum. Meth. B 307 541

  • [1]

    Ewing R C, Weber W J, Clinard Jr F W 1995 Prog. Nucl. Energ. 29 63

    [2]

    Boizot B, Petite G, Ghaleb D, Reynard B, Calas G 1999 J. Non-Cryst. Solids 243 268

    [3]

    Ollier N, Boizot B, Reynard B, Ghaleb D, Petite G 2005 J. Nucl. Mater. 340 209

    [4]

    Jiang N, Silcox J 2004 J. Non-Cryst. Solids 342 12

    [5]

    Delaye J M, Ghaleb D 1996 Mat. Sci. Eng. B 37 232

    [6]

    Delaye J M, Ghaleb D 1997 J. Nucl. Mater. 244 22

    [7]

    Kieu L H, Delaye J M, Cormier L, Stolz C 2011 J. Non-Cryst. Solids 357 3313

    [8]

    Delaye J M, Peuget S, Calas G, Galoisy L 2014 Nucl. Instrum. Meth. B 326 256

    [9]

    Kilymis D A, Delaye J M 2014 J. Non-Cryst. Solids 401 147

    [10]

    Woodcock L V 1976 J. Chem. Phys. 65 1565

    [11]

    Soules T F 1979 J. Chem. Phys. 71 4570

    [12]

    Soules T F, Varshneya A K 1981 J. Am. Ceram. Soc. 64 145

    [13]

    Stoch P, Stoch A 2015 J. Non-Cryst. Solids 411 106

    [14]

    Nan S, Yuan W, Wang T S, Peng H B, Chen L, Du X, Zhang D F, L P 2016 High Pow. Laser Part. Beam 28 40 (in Chinese) [南帅, 袁伟, 王铁山, 彭海波, 陈亮, 杜鑫, 张多飞, 律鹏 2016 强激光与粒子束 28 40]

    [15]

    Zhong J, Bray P J 1989 J. Non-Cryst. Solids 111 67

    [16]

    Yun Y H, Bray P J 1978 J. Non-Cryst. Solids 30 45

    [17]

    Dell W J, Bray P J, Xiao S Z 1983 J. Non-Cryst. Solids 58 1

    [18]

    Todorov I T 2006 J. Mater. Chem. 16 1911

    [19]

    Roux S L, Jund P 2010 Comp. Mater. Sci. 49 70

    [20]

    King S V 1967 Natuer 213 1112

    [21]

    Chen L, Wang T S, Zhang G F, Yang K J, Peng H B, Zhang L M 2013 Chin. Phys. B 22 126101

    [22]

    Chen L, Zhang D F, L P, Zhang J D, Du X, Yuan W, Nan S, Zhu Z H, Wang T S 2016 J. Non-Cryst. Solids 448 6

    [23]

    Imai H, Arai K, Isoya J, Hosono H, Abe Y, Imagawa H 1993 Phys. Rev. B 48 3116

    [24]

    Yang K J, Wang T S, Zhang G F, Peng H B, Chen L, Zhang L M, Li C X, Tian F, Yuan W 2013 Nucl. Instrum. Meth. B 307 541

  • [1] Li Duo-Duo, Zhang Song. Molecular structures in the non-adiabatic relaxaiton processes of excited states of pentafluoropyridine. Acta Physica Sinica, 2024, 73(4): 043101. doi: 10.7498/aps.73.20231570
    [2] Zhou Ming-Jin, Hou Qing, Pan Rong-Jian, Wu Lu, Fu Bao-Qin. Molecular dynamics study of special quasirandom structure of Zr-Nb alloys. Acta Physica Sinica, 2021, 70(3): 033103. doi: 10.7498/aps.70.20201407
    [3] Wang Yan, Xu Jin-Liang, Li Wen, Liu Huan. Molecular dynamics study on structural characteristics of Lennard-Jones supercritical fluids. Acta Physica Sinica, 2020, 69(7): 070201. doi: 10.7498/aps.69.20191591
    [4] Li Rui, Liu Teng, Chen Xiang, Chen Si-Cong, Fu Yi-Hong, Liu Lin. Influence of interface structure on nanoindentation behavior of Cu/Ni multilayer film: Atomic scale simulation. Acta Physica Sinica, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [5] Zhang Zhong-Qiang, Li Chong, Liu Han-Lun, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure. Acta Physica Sinica, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [6] Peng Hai-Bo, Liu Feng-Fei, Zhang Bing-Tao, Zhang Xiao-Yang, Sun Meng-Li, Du Xin, Wang Peng, Yuan Wei, Wang Tie-Shan, Wang Jian-Wei. Comparative studies of irradiation effects in borosilicate glass and fused silica irradiated by energetic Xe ions. Acta Physica Sinica, 2018, 67(3): 038101. doi: 10.7498/aps.67.20172117
    [7] Zhang Jin-Ping, Zhang Yang-Yang, Li Hui, Gao Jing-Xia, Cheng Xin-Lu. Molecular dynamics investigation of thermite reaction behavior of nanostructured Al/SiO2 system. Acta Physica Sinica, 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [8] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [9] Wang Cheng-Long, Wang Qing-Yu, Zhang Yue, Li Zhong-Yu, Hong Bing, Su Zhe, Dong Liang. Molecular dynamics study of cascade damage at SiC/C interface. Acta Physica Sinica, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [10] Xu Bo, Wang Shu-Lin, Li Lai-Qiang, Li Sheng-Juan. Structure evolvement of solid particles and mechano-chemical effect. Acta Physica Sinica, 2012, 61(9): 090201. doi: 10.7498/aps.61.090201
    [11] Ma Wen, Zhu Wen-Jun, Chen Kai-Guo, Jing Fu-Qian. Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects. Acta Physica Sinica, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [12] Wu Yang, Duan Hai-Ming. Study of structure evolution of (C60)N clusters usingLennard-Jones atom-atom potential. Acta Physica Sinica, 2011, 60(7): 076102. doi: 10.7498/aps.60.076102
    [13] Xu Wei, Li Cheng-Ren, Chen Bao-Jiu, Feng Zhi-Qing. Optical property of Bi3+∶Eu3+-codoped borosilicate glass with Eu3+ ions as probe. Acta Physica Sinica, 2010, 59(2): 1328-1332. doi: 10.7498/aps.59.1328
    [14] Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics study on structural change of a Au959 cluster supported on MgO(100) surface at low temperature. Acta Physica Sinica, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [15] Liu Jian-Ting, Duan Hai-Ming. Molecular dynamics simulation of structures and melting behaviours of iridium clusters with different potentials. Acta Physica Sinica, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [16] Zhu Cai-Zhen, Zhang Pei-Xin, Xu Qi-Ming, Liu Jian-Hong, Ren Xiang-Zhong, Zhang Qian-Ling, Hong Wei-Liang, Li Lin-Lin. Molecular dynamics study the effect of the ratio Ca/Al on CaO-Al2O3-SiO2 structure. Acta Physica Sinica, 2006, 55(9): 4795-4802. doi: 10.7498/aps.55.4795
    [17] Hao Wan-Jun, Li Chang, Wei Ying-Jin, Chen Gang, Xu Wu. Transformation of electronic state of Co3+ and its influence on the structural development in Li(AlxCo1-x)O2. Acta Physica Sinica, 2003, 52(4): 1023-1027. doi: 10.7498/aps.52.1023
    [18] Zhao Xiao-Peng, Gao Xiu-Min, Gao Dan-Jun, Zhong Hong-Fei. . Acta Physica Sinica, 2002, 51(5): 1075-1080. doi: 10.7498/aps.51.1075
    [19] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] Wang Zhen-Xia, Li Xue-Peng, Yu Li-Ping, Ma Yu-Gang, He Guo-Wei, Hu Gang, Chen Yi, Duan Xiao-Feng. . Acta Physica Sinica, 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
Metrics
  • Abstract views:  5515
  • PDF Downloads:  208
  • Cited By: 0
Publishing process
  • Received Date:  01 December 2016
  • Accepted Date:  16 March 2017
  • Published Online:  05 May 2017

/

返回文章
返回