|
|
Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber |
Wang Xiao-Fa1,2,3, Zhang Jun-Hong2, Gao Zi-Ye1, Xia Guang-Qiong1, Wu Zheng-Mao1,3 |
1. School of Physical Science and Technology, Southwest University, Chongqing 400715, China; 2. Key Laboratory of Optical Fiber Communication Technology, Chongqing Education Commission, College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 3. School of Mathematics and Statistics, Southwest University, Chongqing 400715, China |
|
|
Abstract The Tm-doped mode-locked pulsed fiber lasers, which are known for their wide applications in optical communication, laser medical system and special material processing, have attracted considerable interest as novel laser sources. Up to now, many reported Tm-doped mode-locked fiber lasers focused on emitting picosecond or femtosecond pulses at a few megahertz (MHz) repetition rate. Actually, due to the strong chirp, large pulse width, low peak power and little nonlinear phase accumulation characteristics in the process of power amplifier, nanosecond mode-locked fiber laser is a representative of ideal seed source in the chirped pulse amplification (CPA) system. However, nanosecond mode-locked fiber lasers are generally implemented with the kilometerlong cavity length, corresponding to the fundamental repetition rate of hundreds of kilohertz. Usually, fiber lasers with such a low repetition rate are not desirable in applications of laser material processing, nor medical treatment nor scientific researches. In this paper, we report a nanosecond mode-locked Tm-doped fiber laser with MHz repetition rate based on graphene saturable absorber (SA). As the SA, graphene has excellent optical properties, such as optical visualization, high transparency, ultra-fast relaxation time and nonlinear absorption. It is not limited by the band gap either because of its zero-band-gap structure. Therefore, graphene can be used as fast SA, with wide spectral range operated. Generally, graphene suitable for mode-locked fiber lasers can be produced by using chemical vapor deposition (CVD), liquid phase exfoliation and mechanical exfoliation. Since the CVD technique can obtain high-quality graphene with precisely controlled number of layers, it is always the first choice for the manufacture of graphene. In our work, monolayer graphene layers are grown on copper foils by CVD, and then transferred onto the end face of the fiber connector three times. Meanwhile, a narrow-band fiber Bragg grating is used to constrain longitudinal modes of the laser intra-cavity. By simply adjusting the pump power and the polarization angle of polarization controller, stable 2 μm nanosecond mode-locked pulses are obtained in a wide range from 3.8 ns to 94.3 ns at 3.8 MHz repetition rate. We believe that the results obtained will be helpful for investigating the CPA system at 2 μm.
|
Received: 14 February 2017
|
|
Fund:Project supported by the National Natural Science Foundation of China (Grant Nos. 11304409, 61475127, 61575163), the Natural Science Foundation of Chongqing City, China (Grant No. CSTC2013jcyjA4004), the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ1500422), and the Special Theme Projects on LCD Industrial Generic Technology Innovation of Chongqing, China (Grant No. CSTC2015zdcy-ztzx40003). |
Corresponding Authors:
吴正茂
E-mail: zmwu@swu.edu.cn
|
|
|
|
[1] |
Wang Q, Geng J, Luo T, Jiang S 2009 Opt. Lett. 34 3616
|
[2] |
Liu J, Xu J, Liu K, Tan F, Wang P 2013 Opt. Lett. 38 4150
|
[3] |
Yang N, Tang Y, Xu J 2015 Laser Phys. Lett. 12 085102
|
[4] |
Kieu K, Wise F 2009 Lasers and Electro-Optics Baltimore, Maryland USA, June 2-4 2009 pCML7
|
[5] |
Wang Y, Alam S, Obraztsova E, Pozharov A, Set S, Yamashita S 2016 Opt. Lett. 41 3864
|
[6] |
Yan Z Y, Li X H, Tang Y L, Shum P, Zhang Y, Wang Q J 2015 Opt. Express 23 4369
|
[7] |
Wang Q Q, Chen T, Chen K 2010 Lasers and Electro-Optics San Jose, California, USA, May 16-21, 2010 pCFK7
|
[8] |
Rudy C, Urbanek K, Digonnet M, Byer R 2013 J. Lightwave Technol. 31 1809
|
[9] |
Jin X X, Wang X, Wang X, Zhou P 2015 Appl. Opt. 54 8260
|
[10] |
Huang S S, Wang Y G, Yan P G, Zhang G L, Li H Q, Lin R Y 2014 Laser Phys. 24 015001
|
[11] |
Huang S S, Wang Y G, Yan P G, Zhao J Q, Li H Q, Lin R Y 2014 Opt. Express 22 11417
|
[12] |
Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611
|
[13] |
Bao Q, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang Y T 2009 Adv. Funct. Mater. 19 3077
|
[14] |
Zhang M, Kelleher E, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A, Popov S, Taylor J 2012 Opt. Express 20 25077
|
[15] |
Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2013 Opt. Express 21 12797
|
[16] |
Wang Q Q, Chen T, Zhang B, Li M S, Lu Y F, Chen K 2013 Appl. Phys. Lett. 102 131117
|
[17] |
Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2015 Opt. Express 23 9339
|
[18] |
Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L, Abramski K 2015 Photon. Res. 3 119
|
[19] |
Ismail M A, Harun S W, Zulkepely N R, Nor R M, Ahmad F, Ahmad H 2012 Appl. Opt. 51 8621
|
[20] |
Kelleher E, Travers J, Sun Z, Rozhin A, Ferrari A 2009 Appl. Phys. Lett. 95 111108
|
[21] |
Zhang X M, Gu C, Chen G L, Sun B, Xu L X, Wang A T, Ming H 2012 Opt. Lett. 37 1334
|
[22] |
Xu J, Wu S D, Liu J, Wang Q, Yang Q H, Wang P 2012 Opt. Commun. 285 4466
|
[23] |
Kobtsev S, Kukarin S, Fedotov Y 2008 Opt. Express 16 21936
|
[24] |
Liu Z B, He X Y, Wang D N 2011 Opt. Lett. 36 3024
|
[25] |
Azooz S, Harun S, Ahmad H, Halder A, Paul M, Pal M, Bhadra S 2015 Chin. Phys. Lett. 32 014204
|
[26] |
Wang X, Zhou P, Wang X L, Xiao H, Liu Z J 2014 Opt. Express 22 6147
|
[27] |
Fu B, Gui L, Li X, Xiao X S, Zhu H W, Yang C X 2013 IEEE Photon. Tech. L. 25 1447
|
[28] |
Wang W R, Zhou Y X, Li T, Wang Y L, Xie X M 2012 Acta Phys. Sin. 61 038702 (in Chinese) [王文荣, 周玉修, 李铁, 王跃林, 谢晓明 2012 物理学报 61 038702]
|
[29] |
Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S, Geim A 2006 Phys. Rev. Lett. 97 187401
|
[30] |
Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C 2007 Nano Lett. 7 238
|
[31] |
Liu J, Xu J, Wang P 2012 IEEE Photon. Tech. Lett. 24 539
|
[32] |
Zhao J Q, Wang Y G, Yan P G, Ruan S C, Zhang G L, Li H Q, Tsang Y H 2013 Laser Phys. 23 075105
|
[33] |
Jin C, Yang S G, Wang X J, Chen H W, Chen M H, Xie S Z 2016 IEEE Photon. Tech. Lett. 28 1352
|
[34] |
Kelleher E, Travers J, Ippen E, Sun Z, Ferrari A, Popov S, Taylor J 2009 Opt. Lett. 34 3526
|
[1] |
Zu Feng-Xia, Zhang Pan-Pan, Xiong Lun, Yin Yong, Liu Min-Min, Gao Guo-Ying. Design and electronic transport properties of organic thiophene molecular rectifier with the graphene electrodes[J]. Acta Physica Sinica, 2017, 66(9):
.
doi:10.7498/aps.66.098501. |
[2] |
Chen Hao, Peng Tong-Jiang, Liu Bo, Sun Hong-Juan, Lei De-Hui. Effect of reduction temperature on structure and hydrogen sensitivity of graphene oxides at room temperature[J]. Acta Physica Sinica, 2017, 66(8):
.
doi:10.7498/aps.66.080701. |
[3] |
Pei Li, Wu Liang-Ying, Wang Jian-Shuai, Li Jing, Ning Ti-Gang. Phase shift chirped fiber Bragg grating based distributed strain and position sensing[J]. Acta Physica Sinica, 2017, 66(7):
.
doi:10.7498/aps.66.070702. |
[4] |
Qiao Xue-Guang, Shao Zhi-Hua, Bao Wei-Jia, Rong Qiang-Zhou. Fiber-optic ultrasonic sensors and applications[J]. Acta Physica Sinica, 2017, 66(7):
.
doi:10.7498/aps.66.074205. |
|
|
|
|