Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of the linewidth enhancement factor on the characteristics of the random number extracted from the optical feedback semiconductor laser

Han Tao Liu Xiang-Lian Li Pu Guo Xiao-Min Guo Yan-Qiang Wang Yun-Cai

Citation:

Influence of the linewidth enhancement factor on the characteristics of the random number extracted from the optical feedback semiconductor laser

Han Tao, Liu Xiang-Lian, Li Pu, Guo Xiao-Min, Guo Yan-Qiang, Wang Yun-Cai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Random numbers play an important role in many fields, including information security, testing and engineering practice. Especially in information security, generation of secure and reliable random numbers, they have a significant influence on national security, financial stability, trade secrets and personal privacy. Generally, random number generators can be classified as two main types: pseudo random number generators and physical random number generators. Pseudo random numbers with high speed are generated by software algorithms, but the inherent periodicity will cause serious hidden dangers when they are used in information security. Random numbers based on physical entropy sources (such as electronic thermal noise, frequency jitter of oscillator, quantum randomness) can produce reliable random numbers. However, due to the limitation of traditional physical source bandwidth, their generation speeds are at a level of Mbit/s typically, which cannot meet the needs of the current high-speed and largecapacity communication. In 2008, Uchida et al. (2008 Nat. Photon. 2 728) realized the physical random number of 1.7 Gbit/s by using a wideband chaotic laser for the first time. The emergence of wideband physical entropy sources such as chaotic laser greatly promote the rapid development of the physical random number generators. As far as we know, a semiconductor laser can generate wideband chaotic signals under external disturbances such as optical feedback, optical injection or photoelectric feedback. However, compared with the structures of other two lasers, the structure of the optical feedback semiconductor laser is simple and easy to integrate. Therefore, chaotic signals have received great attention to produce high-speed physical random number extracted from the optical feedback semiconductor laser. In the reported schemes, a variety of post-processing methods are used to improve the speed and randomness of random numbers. Besides, optimizing the chaotic entropy source can also improve the performance of random number. So far, the influence of internal parameters on the dynamic characteristics of semiconductor lasers has attracted wide attention. The linewidth enhancement factor is one of the key parameters for a semiconductor laser. The values of linewidth enhancement factor are different, depending on the type of semiconductor laser. The existence of linewidth enhancement factor results in a large number of unstable dynamic characteristics of semiconductor lasers. Therefore, it is of great significance for studying the influence of the linewidth enhancement factor on performance of random numbers. In this paper, we focus on the influence of the linewidth enhancement factor on the randomness of the obtained random numbers. The time delay characteristics and complexity are two important parameters to measure the quality of chaotic signals. The simulation results show that with the increase of the linewidth enhancement factor, the time delay characteristic peak of the chaotic signal from an optical feedback semiconductor laser decreases gradually, meanwhile, the maximum Lyapunov exponent of chaotic signal increases gradually. The randomness of random numbers, generated by the chaotic signal from the optical feedback semiconductor laser under different linewidth enhancement factors, is tested by NIST SP 800-22. The test results show that semiconductor laser with larger linewidth enhancement factor is chosen as a physical entropy source to generate random numbers with high quality.
      Corresponding author: Liu Xiang-Lian, liuxianglian@tyut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 201601D021021), the National Natural Science Foundation of China (Grant Nos. 61671316, 61505137, 61405138, 61505136), the Special Fund For Basic Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 61227016), the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 2014DFA50870), and the Qualified Personnel Foundation of Taiyuan University of Technology (Grant No. tyutrc201387a).
    [1]

    Li P 2014 Ph. D. Dissertation (Taiyuan: Taiyuan University of Technology) (in Chinese) [李璞 2014 博士学位论文(太原: 太原理工大学)]

    [2]

    Xu P, Wong Y L, Hoduchi T K, Abshire P A 2006 Electron. Lett. 42 1346

    [3]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circuits I 47 615

    [4]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003 IEEE Trans. Comput. 52 403

    [5]

    Schmidt H 1970 J. Appl. Phys. 41 462

    [6]

    Stipčević M, Rogina B M 2007 Rev. Sci. Instrum. 78 045104

    [7]

    Martino A J, Morris G M 1991 Appl. Opt. 30 981

    [8]

    Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 71 1675

    [9]

    Guo H, Liu Y, Dang A H, Wei W 2009 Chin. Sci. Bull. 54 3651 (in Chinese) [郭弘, 刘钰, 党安红, 韦韦 2009 科学通报 54 3651]

    [10]

    Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H 2011 Phys. Rev. A 83 023820

    [11]

    Zhou Q, Hu Y, Liao X F 2008 Acta Phys. Sin. 57 5413 (in Chinese) [周庆, 胡月, 廖晓峰 2008 物理学报 57 5413]

    [12]

    Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011 Opt. Lett. 36 1008

    [13]

    Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 030003 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子学进展 50 030003]

    [14]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimiri S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [15]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [16]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [17]

    Li X, Chan S 2012 Opt. Lett. 37 2163

    [18]

    Li X, Chan S 2013 IEEE J. Quantum Electron. 49 829

    [19]

    Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763

    [20]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509 (in Chinese) [唐曦, 吴加贵, 夏光琼, 吴正茂 2011 物理学报 60 110509]

    [21]

    Wu J G, Tang X, Wu Z M, Xia G Q, Feng G Y 2012 Laser Phys. 22 1476

    [22]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634

    [23]

    Wang A, Li P, Zhang J, Zhang J, Zhang J, Li L, Wang Y 2013 Opt. Express 21 20452

    [24]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese) [杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 物理学报 64 084204]

    [25]

    Hirano K, Amano K, Uchida A, Naito S, Inoue M, Yoshimiri S, Yoshinura K, Davis P 2009 IEEE J. Quantum Electron. 45 1367

    [26]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese) [张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 物理学报 59 7679]

    [27]

    Xiao B J, Hou J Y, Zhang J Z, Xue L G, Wang Y C 2012 Acta Phys. Sin. 61 150502 (in Chinese) [萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才 2012 物理学报 61 150502]

    [28]

    Zhang J Z, Wang Y C, Xue L G, Hou J Y, Zhang B B, Wang A B, Zhang M J 2012 Appl. Opt. 51 1709

    [29]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [30]

    Hwang S K, Liang D H 2006 Appl. Phys. Lett. 89 061120

    [31]

    Zhang M J, Liu T G, Li J X, Wang Y C 2011 Acta Phot. Sin. 40 542 (in Chinese) [张明江, 刘铁根, 李静霞, 王云才 2011 光子学报 40 542]

    [32]

    Wieczorek S, Chow W W 2005 Opt. Commun. 246 471

    [33]

    Wieczorek S, Krauskopf B, Simpson T B, Lenstra D 2005 Phys. Report 416 1

    [34]

    Pochet M, Naderi N A, Terry N, Kovanis V, Lester L F 2009 Opt. Express 17 20623

    [35]

    Liu G, Jin X, Chuang S L 2001 IEEE Photon. Technol. Lett. 13 430

    [36]

    Yang S Q, Zhang X H, Zhao C A 2000 Acta Phys. Sin. 49 636 (in Chinese) [杨绍清, 章新华, 赵长安 2000 物理学报 49 636]

  • [1]

    Li P 2014 Ph. D. Dissertation (Taiyuan: Taiyuan University of Technology) (in Chinese) [李璞 2014 博士学位论文(太原: 太原理工大学)]

    [2]

    Xu P, Wong Y L, Hoduchi T K, Abshire P A 2006 Electron. Lett. 42 1346

    [3]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circuits I 47 615

    [4]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003 IEEE Trans. Comput. 52 403

    [5]

    Schmidt H 1970 J. Appl. Phys. 41 462

    [6]

    Stipčević M, Rogina B M 2007 Rev. Sci. Instrum. 78 045104

    [7]

    Martino A J, Morris G M 1991 Appl. Opt. 30 981

    [8]

    Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 71 1675

    [9]

    Guo H, Liu Y, Dang A H, Wei W 2009 Chin. Sci. Bull. 54 3651 (in Chinese) [郭弘, 刘钰, 党安红, 韦韦 2009 科学通报 54 3651]

    [10]

    Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H 2011 Phys. Rev. A 83 023820

    [11]

    Zhou Q, Hu Y, Liao X F 2008 Acta Phys. Sin. 57 5413 (in Chinese) [周庆, 胡月, 廖晓峰 2008 物理学报 57 5413]

    [12]

    Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011 Opt. Lett. 36 1008

    [13]

    Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 030003 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子学进展 50 030003]

    [14]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimiri S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [15]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [16]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [17]

    Li X, Chan S 2012 Opt. Lett. 37 2163

    [18]

    Li X, Chan S 2013 IEEE J. Quantum Electron. 49 829

    [19]

    Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763

    [20]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509 (in Chinese) [唐曦, 吴加贵, 夏光琼, 吴正茂 2011 物理学报 60 110509]

    [21]

    Wu J G, Tang X, Wu Z M, Xia G Q, Feng G Y 2012 Laser Phys. 22 1476

    [22]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634

    [23]

    Wang A, Li P, Zhang J, Zhang J, Zhang J, Li L, Wang Y 2013 Opt. Express 21 20452

    [24]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese) [杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 物理学报 64 084204]

    [25]

    Hirano K, Amano K, Uchida A, Naito S, Inoue M, Yoshimiri S, Yoshinura K, Davis P 2009 IEEE J. Quantum Electron. 45 1367

    [26]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese) [张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 物理学报 59 7679]

    [27]

    Xiao B J, Hou J Y, Zhang J Z, Xue L G, Wang Y C 2012 Acta Phys. Sin. 61 150502 (in Chinese) [萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才 2012 物理学报 61 150502]

    [28]

    Zhang J Z, Wang Y C, Xue L G, Hou J Y, Zhang B B, Wang A B, Zhang M J 2012 Appl. Opt. 51 1709

    [29]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [30]

    Hwang S K, Liang D H 2006 Appl. Phys. Lett. 89 061120

    [31]

    Zhang M J, Liu T G, Li J X, Wang Y C 2011 Acta Phot. Sin. 40 542 (in Chinese) [张明江, 刘铁根, 李静霞, 王云才 2011 光子学报 40 542]

    [32]

    Wieczorek S, Chow W W 2005 Opt. Commun. 246 471

    [33]

    Wieczorek S, Krauskopf B, Simpson T B, Lenstra D 2005 Phys. Report 416 1

    [34]

    Pochet M, Naderi N A, Terry N, Kovanis V, Lester L F 2009 Opt. Express 17 20623

    [35]

    Liu G, Jin X, Chuang S L 2001 IEEE Photon. Technol. Lett. 13 430

    [36]

    Yang S Q, Zhang X H, Zhao C A 2000 Acta Phys. Sin. 49 636 (in Chinese) [杨绍清, 章新华, 赵长安 2000 物理学报 49 636]

  • [1] Yongbo Wang, Xi Tang, Lehan Zhao, Xin Zhang, Jin Deng, Zhengmao Wu, Junbo Yang, Heng Zhou, Jiagui Wu, Guangqiong Xia. A Tbit/s parallel real-time physical random number scheme based on chaos optical frequency comb of Si3N4 micro-ring. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231913
    [2] Liu Yuan, Yuan Ji-Yang, Zhou Xin-Yu, Gu Shuang-Quan, Zhou Pei, Mu Peng-Hua, Li Nian-Qiang. Fast physical random bit generation of wideband flat chaos signal based on filter feedback. Acta Physica Sinica, 2022, 71(22): 224203. doi: 10.7498/aps.71.20221173
    [3] Wu Jia-Chen, Song Zheng, Xie Yi-Feng, Zhou Xin-Yu, Zhou Pei, Mu Peng-Hua, Li Nian-Qiang. High-quality random number sequences extracted from chaos post-processed by phased-array semiconductor laser. Acta Physica Sinica, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [4] Li Pu, Jiang Lei, Sun Yuan-Yuan, Zhang Jian-Guo, Wang Yun-Cai. Study on real-time optical sampling of chaotic laser for all-optical physical random number generator. Acta Physica Sinica, 2015, 64(23): 230502. doi: 10.7498/aps.64.230502
    [5] Yang Hai-Bo, Wu Zheng-Mao, Tang Xi, Wu Jia-Gui, Xia Guang-Qiong. Influence of feedback strength on the characteristics of the random number sequence extracted from an external-cavity feedback semiconductor laser. Acta Physica Sinica, 2015, 64(8): 084204. doi: 10.7498/aps.64.084204
    [6] Yan Sen-Lin. Frequency enhancement and control of chaos in two spatial coupled semiconductor lasers using external light injection. Acta Physica Sinica, 2012, 61(16): 160505. doi: 10.7498/aps.61.160505
    [7] Liang Jun-Sheng, Wu Yuan, Wang An-Bang, Wang Yun-Cai. Extracting the external-cavity key of a chaotic semiconductor laser with double optical feedback by spectrum analyzer. Acta Physica Sinica, 2012, 61(3): 034211. doi: 10.7498/aps.61.034211
    [8] Feng Ye, Yang Yi-Biao, Wang An-Bang, Wang Yun-Cai. Generation of 27 GHz flat broadband chaotic laser with semiconductor laser loop. Acta Physica Sinica, 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [9] Zhang Ji-Bing, Zhang Jian-Zhong, Yang Yi-Biao, Liang Jun-Sheng, Wang Yun-Cai. Randomness analysis of external cavity semiconductor laser as entropy source. Acta Physica Sinica, 2010, 59(11): 7679-7685. doi: 10.7498/aps.59.7679
    [10] Zhao Yan-Feng. Chaos characteristics of the semiconductor laser with double external cavity optical feedback. Acta Physica Sinica, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [11] Kong Ling-Qin, Fan Lin-Lin, Wang An-Bang, Wang Yun-Cai. Coherence length tunable semiconductor laser. Acta Physica Sinica, 2009, 58(11): 7680-7685. doi: 10.7498/aps.58.7680
    [12] Yan Sen-Lin. Control of chaos in an external cavity delay feedback semiconductor laser via modulating the polarizing light. Acta Physica Sinica, 2008, 57(11): 6878-6882. doi: 10.7498/aps.57.6878
    [13] Yan Sen-Lin. Control of chaos in a delayed feedback semiconductor laser via dual-wedges. Acta Physica Sinica, 2008, 57(5): 2827-2831. doi: 10.7498/aps.57.2827
    [14] Yan Sen-Lin. Controlling chaos in a semiconductor laser via photoelectric delayed negative-feedback. Acta Physica Sinica, 2008, 57(4): 2100-2106. doi: 10.7498/aps.57.2100
    [15] Kong Ling-Qin, Wang An-Bang, Wang Hai-Hong, Wang Yun-Cai. Dynamics of semiconductor laser with optical feedback: Evolution from low-frequency fluctuations to chaos. Acta Physica Sinica, 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
    [16] Zhou Qing, Hu Yue, Liao Xiao-Feng. Ture random number generators based on mouse movement and chaos systems. Acta Physica Sinica, 2008, 57(9): 5413-5418. doi: 10.7498/aps.57.5413
    [17] Wang Lei, Wang Fu-Ping, Wang Zan-Ji. A novel chaos-based pseudo-random number generator. Acta Physica Sinica, 2006, 55(8): 3964-3968. doi: 10.7498/aps.55.3964
    [18] Huang Liang-Yu, Luo Xiao-Shu, Fang Jin-Qing, Zhao Yi-Bo, Tang Guo-Ning. Controlling chaotic dynamical behavior of a semiconductor laser with external optical feedback using sliding mode variable structure control scheme. Acta Physica Sinica, 2005, 54(2): 543-549. doi: 10.7498/aps.54.543
    [19] Sheng Li-Yuan, Cao Li-Ling, Sun Ke-Hui, Wen Jiang. Pseudo-random number generator based on TD-ERCS chaos and its statistic characteristics analysis. Acta Physica Sinica, 2005, 54(9): 4031-4037. doi: 10.7498/aps.54.4031
    [20] Feng MingMing, Qin XiaoLin, Zhou ChunYuan, Xiong Li, Ding LiangEn. Quantum random number generator based on polarization. Acta Physica Sinica, 2003, 52(1): 72-76. doi: 10.7498/aps.52.72
Metrics
  • Abstract views:  6217
  • PDF Downloads:  288
  • Cited By: 0
Publishing process
  • Received Date:  06 January 2017
  • Accepted Date:  21 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回