Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of reagent vibrational excitation on reaction of H+CH+C++H2

Tang Xiao-Ping He Xiao-Hu Zhou Can-Hua Yang Yang

Citation:

Effect of reagent vibrational excitation on reaction of H+CH+C++H2

Tang Xiao-Ping, He Xiao-Hu, Zhou Can-Hua, Yang Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The effect of reagent vibrational excitation on the stereodynamical properties of H(2S)+CH+(X1+)C+(2P)+H2(X1g+)reaction is investigated by quasi-classical trajectory method on a globally smooth ab initio potential surface of the 2A' state at a collision energy of 500 meV. The reaction probability and the reaction cross-section are also studied. In the calculation, the vibrational levels of the reactant molecules are taken as v = 0, 1, 3, 5 and j = 0, respectively, where v is the vibrational quantum number and j is the rotational quantum number. The calculation results show that the reaction probability reaches a maximum when v = 1, and then decreases with the vibrational quantum number increasing. The integral cross-section decreases sharply with the increase of vibrational quantum number. The potential distribution P(r), the dihedral angle distribution P(r), and the polarization-dependent generalized differential cross sections are calculated. P(r) represents the relation between the reagent relative velocity k and the product rotational angular momentum j'. P(r) describes the correlation of k-k'-j', in which k' is the product reagent relative velocity. The peak of P(r) is at r = 90 and symmetric with respect to 90, which shows that the product rotational angular momentum vector is strongly aligned along the direction perpendicular to the relative velocity direction. The peak of P(r) distribution becomes increasingly obvious with the increase of the rotational quantum number. The dihedral angle distribution P(r) tends to be asymmetric with respect to the k-k' scattering plane (or about r= 180), directly reflecting the strong polarization of the product angular momentum for the title reaction. Each curve has two evident peaks at about r = 90 and r = 270, but the two peak intensities are obviously different, which suggests that j' is not only aligned, but also strongly orientated along the Y-axis of the center-of-mass frame. The peak at r= 90 is apparently stronger than that at r = 270, which indicates that j' tends to be oriented along the positive direction of Y-axis. In order to validate more information, we also plot the angular momentum polarization in the forms of polar plots r and r. The distribution of P(r; r) is well consistent with the distribution P(r) and also the distribution P(r) of the products at different vibrational quantum states. In addition, the polarization-dependent differential cross section is quite sensitive to the reagent vibrational excitation. Based on the obtained results, we find that the observed excess of the methylidyne cation CH+ is closely related to the reactant of vibrational excitation in interstellar chemistry.
      Corresponding author: He Xiao-Hu, huzi233@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21403226, 21503226).
    [1]

    Federer W, Villinger H, Howorka F, Lindinger W, Tosi P, Bassi D, Ferguson E 1984 Phys. Rev. Lett. 52 2084

    [2]

    Stoecklin T, Halvick P 2005 Phys. Chem. Chem. Phys. 7 2446

    [3]

    Lique F, Werfelli G, Halvick P, Stoecklin T, Faure A, Wiesenfeld L, Dagdigian P J 2013 J. Chem. Phys. 138 204314

    [4]

    Werfelli G, Halvick P, Honvault P, Kerkeni B, Stoecklin T 2015 J. Chem. Phys. 143 114304

    [5]

    Zanchet A, Godard B, Bulut N, Roncero O, Halvick P, Cernicharo J 2013 Astrophys. J. 766 80

    [6]

    Grozdanov T, McCarroll R 2013 Chem. Phys. Lett. 575 23

    [7]

    Halvick P, Stoecklin T, Larrgaray P, Bonnet L 2007 Phys. Chem. Chem. Phys. 9 582

    [8]

    Warmbier R, Schneider R 2011 Phys. Chem. Chem. Phys. 13 10285

    [9]

    Herrez-Aguilar D, Jambrina P, Menndez M, Aldegunde J, Warmbier R, Aoiz F 2014 Phys. Chem. Chem. Phys. 16 24800

    [10]

    Ervin K M, Armentrout P B 1986 J. Chem. Phys. 84 6738

    [11]

    Plasil R, Mehner T, Dohnal P, Kotrik T, Glosik J, Gerlich D 2011 Astrophys. J. 737 60

    [12]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. Lett. 357 483

    [13]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [14]

    Tang B Y, Chen M D, Han K L, Zhang Z H 2001 J. Chem. Phys. 115 731

    [15]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [16]

    Liu Y F, He X H, Shi D H, Sun J F 2011 Chin. Phys. B 20 078201

    [17]

    Tang X P, Zhou C H, He X X, Yu D Q, Yang Y 2017 Acta Phys. Sin. 66 023401 (in Chinese) [唐晓平, 周灿华, 和小虎, 于东麒, 杨阳 2017 物理学报 66 023401]

    [18]

    Li Y Q, Zhang P Y, Han K L 2015 J. Chem. Phys. 142 124302

    [19]

    Liu S L, Shi Y 2011 Chin. Phys. B 20 013404

    [20]

    Yang H, Liu Z, Sun S, Li L, Du H C, Hu B 2011 J. Theor. Comput. Chem. 10 75

    [21]

    Wu V W K 2011 Phys. Chem. Chem. Phys. 13 9407

    [22]

    Kong H, Liu X G, Xu W W, Zhang Q G 2009 Acta Phys.-Chim. Sin. 25 935 (in Chinese) [孔浩, 刘新国, 许文武, 张庆刚 2009 物理化学学报 25 935]

    [23]

    Ma J J, Zhang Z H, Cong S L 2006 Acta Phys.-Chim. Sin. 22 972 (in Chinese) [马建军, 张志红, 丛书林 2006 物理化学学报 22 972]

    [24]

    Wu J C, Wang M S, Yang C L, Li X H, Chen X Q 2011 Chin. Phys. Lett. 28 063401

    [25]

    Balakrishnan A, Smith V, Stoicheff B 1992 Phys. Rev. Lett. 68 2149

    [26]

    Han K L, He G Z, Lou N Q 1998 Chin. J. Chem. Phys. 11 525 (in Chinese) [韩克利, 何国钟, 楼南泉 1998 化学物理学报 11 525]

  • [1]

    Federer W, Villinger H, Howorka F, Lindinger W, Tosi P, Bassi D, Ferguson E 1984 Phys. Rev. Lett. 52 2084

    [2]

    Stoecklin T, Halvick P 2005 Phys. Chem. Chem. Phys. 7 2446

    [3]

    Lique F, Werfelli G, Halvick P, Stoecklin T, Faure A, Wiesenfeld L, Dagdigian P J 2013 J. Chem. Phys. 138 204314

    [4]

    Werfelli G, Halvick P, Honvault P, Kerkeni B, Stoecklin T 2015 J. Chem. Phys. 143 114304

    [5]

    Zanchet A, Godard B, Bulut N, Roncero O, Halvick P, Cernicharo J 2013 Astrophys. J. 766 80

    [6]

    Grozdanov T, McCarroll R 2013 Chem. Phys. Lett. 575 23

    [7]

    Halvick P, Stoecklin T, Larrgaray P, Bonnet L 2007 Phys. Chem. Chem. Phys. 9 582

    [8]

    Warmbier R, Schneider R 2011 Phys. Chem. Chem. Phys. 13 10285

    [9]

    Herrez-Aguilar D, Jambrina P, Menndez M, Aldegunde J, Warmbier R, Aoiz F 2014 Phys. Chem. Chem. Phys. 16 24800

    [10]

    Ervin K M, Armentrout P B 1986 J. Chem. Phys. 84 6738

    [11]

    Plasil R, Mehner T, Dohnal P, Kotrik T, Glosik J, Gerlich D 2011 Astrophys. J. 737 60

    [12]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. Lett. 357 483

    [13]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [14]

    Tang B Y, Chen M D, Han K L, Zhang Z H 2001 J. Chem. Phys. 115 731

    [15]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [16]

    Liu Y F, He X H, Shi D H, Sun J F 2011 Chin. Phys. B 20 078201

    [17]

    Tang X P, Zhou C H, He X X, Yu D Q, Yang Y 2017 Acta Phys. Sin. 66 023401 (in Chinese) [唐晓平, 周灿华, 和小虎, 于东麒, 杨阳 2017 物理学报 66 023401]

    [18]

    Li Y Q, Zhang P Y, Han K L 2015 J. Chem. Phys. 142 124302

    [19]

    Liu S L, Shi Y 2011 Chin. Phys. B 20 013404

    [20]

    Yang H, Liu Z, Sun S, Li L, Du H C, Hu B 2011 J. Theor. Comput. Chem. 10 75

    [21]

    Wu V W K 2011 Phys. Chem. Chem. Phys. 13 9407

    [22]

    Kong H, Liu X G, Xu W W, Zhang Q G 2009 Acta Phys.-Chim. Sin. 25 935 (in Chinese) [孔浩, 刘新国, 许文武, 张庆刚 2009 物理化学学报 25 935]

    [23]

    Ma J J, Zhang Z H, Cong S L 2006 Acta Phys.-Chim. Sin. 22 972 (in Chinese) [马建军, 张志红, 丛书林 2006 物理化学学报 22 972]

    [24]

    Wu J C, Wang M S, Yang C L, Li X H, Chen X Q 2011 Chin. Phys. Lett. 28 063401

    [25]

    Balakrishnan A, Smith V, Stoicheff B 1992 Phys. Rev. Lett. 68 2149

    [26]

    Han K L, He G Z, Lou N Q 1998 Chin. J. Chem. Phys. 11 525 (in Chinese) [韩克利, 何国钟, 楼南泉 1998 化学物理学报 11 525]

  • [1] Tang Xiao-Ping, Zhou Can-Hua, He Xiao-Hu, Yu Dong-Qi, Yang Yang. Influence of collision energy on the stereodynamics of the H+CH+→C++H2 reaction. Acta Physica Sinica, 2017, 66(2): 023401. doi: 10.7498/aps.66.023401
    [2] Wei Qiang. Exploring the stereodynamics of C(3P)+NO(X2)CO(X1+)+N(4S) reaction on 4A potential energy surface. Acta Physica Sinica, 2015, 64(17): 173401. doi: 10.7498/aps.64.173401
    [3] Wang Ming-Xin, Wang Mei-Shan, Yang Chuan-Lu, Liu Jia, Ma Xiao-Guang, Wang Li-Zhi. Influence of isotopic effect on the stereodynamics of reaction H+NH→N+H2. Acta Physica Sinica, 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [4] Duan Zhi-Xin, Qiu Ming-Hui, Yao Cui-Xia. Quantum wave-packet and quasiclassical trajectory of reaction S(3P)+HD. Acta Physica Sinica, 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [5] Xu Xue-Song, Yang Kun, Sun Jia-Shi, Yin Shu-Hui. Dynamics for the reaction O+DCl→OD+Cl. Acta Physica Sinica, 2014, 63(10): 103401. doi: 10.7498/aps.63.103401
    [6] Hu Mei, Liu Xin-Guo, Tan Rui-Shan. Influence of collision energy and reagent vibrational excitation on the stereodynamics of reaction Ar+H2+→ArH++H. Acta Physica Sinica, 2014, 63(2): 023402. doi: 10.7498/aps.63.023402
    [7] Ma Jian-Jun. Collision energy effect on stereodynamics for Sr+CH3I→SrI+CH3. Acta Physica Sinica, 2014, 63(6): 063401. doi: 10.7498/aps.63.063401
    [8] Xu Feng, Zheng Yu-Jun. Dynamics of entangled trajectories in quantum phase space. Acta Physica Sinica, 2013, 62(21): 213401. doi: 10.7498/aps.62.213401
    [9] Xu Guo-Liang, Liu Pei, Liu Yan-Lei, Zhang Lin, Liu Yu-Fang. A study of dynamic properties of exchange reaction H(D)+SH/SD by quasi-classical trajectory method. Acta Physica Sinica, 2013, 62(22): 223402. doi: 10.7498/aps.62.223402
    [10] Ma Jian-Jun. Effect of rotational excitation of NO on the stereodynamics for the reaction N(4S)+NO(X2Π)→N2(X3Σg-)+O(3P). Acta Physica Sinica, 2013, 62(2): 023401. doi: 10.7498/aps.62.023401
    [11] Tan Rui-Shan, Liu Xin-Guo, Hu Mei. Stereodynamics study of Li+HF (v = 0–3,j = 0)→LiF+H reaction. Acta Physica Sinica, 2013, 62(7): 073105. doi: 10.7498/aps.62.073105
    [12] Li Hong, Zheng Bin, Meng Qing-Tian. Quasi-classical trajectory approach to the influence of the rotational excitation on the stereodynamics of the reaction O+HBrOH+Br. Acta Physica Sinica, 2012, 61(15): 153401. doi: 10.7498/aps.61.153401
    [13] Xia Wen-Ze, Yu Yong-Jiang, Yang Chuang-Lu. Influences of isotopic variant and collision energy on the stereodynamics of the N(4S)+H2 reactive system. Acta Physica Sinica, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [14] Wang Ping. The quasi-classical trajectory study in the reaction C+OH(v=0—3, j=0—3)→CO+H. Acta Physica Sinica, 2011, 60(5): 053401. doi: 10.7498/aps.60.053401
    [15] Xu Yan, Zhao Juan, Wang Jun, Liu Fang, Meng Qing-Tian. Influence of the collision energy and isotopic variant on the stereodynamics of reaction H+BrF→HBr+F. Acta Physica Sinica, 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [16] Xu Xue-Song, Zhang Wen-Qin, Jin Kun, Yin Shu-Hui. Effect of vibrational quantum number on stereodynamics of reaction O+HCl→OH+Cl. Acta Physica Sinica, 2010, 59(11): 7808-7814. doi: 10.7498/aps.59.7808
    [17] Liu Xin-Guo, Sun Hai-Zhu, Liu Hui-Rong, Zhang Qing-Gang. Stereodynamics study of O+ +H2 reaction and its isotopic variants. Acta Physica Sinica, 2010, 59(11): 7796-7802. doi: 10.7498/aps.59.7796
    [18] Kong Hao, Liu Xin-Guo, Xu Wen-Wu, Liang Jing-Juan, Zhang Qing-Gang. Stereodynamics study of the reactions of He+H+2 and its isotopic variants. Acta Physica Sinica, 2009, 58(10): 6926-6931. doi: 10.7498/aps.58.6926
    [19] Wu Lian-Wen, Cheng Qian-Sheng. A note on the exponent of dynamical cross-correlation factor. Acta Physica Sinica, 2005, 54(7): 3027-3028. doi: 10.7498/aps.54.3027
    [20] ИСКЛЮЧЕНИЕ ПРОДОЛЬНЫХ ПОЛЯ В КЛАССИЧЕСКОЙ ЭЛЕКТРОДИНАМИКЕ. Acta Physica Sinica, 1955, 11(6): 453-468. doi: 10.7498/aps.11.453
Metrics
  • Abstract views:  4159
  • PDF Downloads:  121
  • Cited By: 0
Publishing process
  • Received Date:  02 March 2017
  • Accepted Date:  14 April 2017
  • Published Online:  05 June 2017

/

返回文章
返回