Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co3O4 mesoporous nanostructure supported by Ni foam as high-performance supercapacitor electrodes

Zhang Cheng Deng Ming-Sen Cai Shao-Hong

Citation:

Co3O4 mesoporous nanostructure supported by Ni foam as high-performance supercapacitor electrodes

Zhang Cheng, Deng Ming-Sen, Cai Shao-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In various energy conversion and storage devices, supercapacitors have been extensively used due to their high power densities, fast delivery rates, and exceptionally long cycle lives. However, the low specific capacitances and low energy densities of supercapacitors largely hinder widespread applications in large-scale energy conversion and storage systems. To improve the specific capacitances of the supercapacitors, the surface areas of the electrode materials should be made as large as possible to allow the capturing and releasing of particles (such as ions, molecules, or electric charges). Here in this work, we demonstrate an efficient approach to the large-scale production of Co3O4 mesoporous nanostructure supported by Ni foam via a simple hydrothermal synthesis followed by ambient annealing at 300 ℃ for 4 h. The designed and fabricated Co3O4 mesoporous nanostructures directly serve as binder- and conductive-agent-free electrodes for supercapacitors, which thus provide more chemical reaction sites, shorten the migration paths for electrons and ions, and improve the electrical conductivity. By taking advantage of the structural features and excellent electronic conductivity, the Co3O4 exhibits the ultrahigh specific capacitances (1.87 Fcm-2 (936 Fg-1) and 1.80 Fcm-2 (907 Fg-1) at current densities of 2.5 mAcm-2 and 5.5 mAcm-2, respectively), high rate capacitances (48.37% of the capacitance can be retained when the current density increases from 2.5 mAcm-2 to 100 mAcm-2) and excellent cycling stability (92.3% of the capacitance can be retained after 4000 charge/discharge cycles at a current density of 10 mAcm-2). The nanostructuring approach and utilizing a binder- and conductive-agent-free electrode can be readily extended to other electrochromic compounds of high-performance energy storage devices.
      Corresponding author: Deng Ming-Sen, deng@gznc.edu.cn
    • Funds: Project supported by the Guizhou Province Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution (Grant No. [2016]002) and the Natural Science Foundation of Guizhou Province, China (Grant No. QKH-J[2011]2097).
    [1]

    Peng X, Peng L L, Wu C Z, Xie Y 2014 Chem. Soc. Rev. 43 3303

    [2]

    Lin T Q, Chen I W, Liu F X, Yang C Y, Bi H, Xu F F, Huang F Q 2015 Science 350 1508

    [3]

    Lang X Y, Hirata A, Fujita T, Chen M W 2011 Nat. Nanotechnol. 6 232

    [4]

    Guan C, Liu J L, Wang Y D, Mao L, Fan Z X, Shen Z X, Zhang H, Wang J 2015 ACS Nano 9 5198

    [5]

    Zhang G Q, Lou X W 2013 Adv. Mater. 25 976

    [6]

    Zhang C, Geng X P, Tang S L, Deng M S, Du Y W 2017 J. Mater. Chem. A 5 5912

    [7]

    Feng C, Zhang J F, He Y, Zhong C, Hu W B, Liu L, Deng Y D 2015 ACS Nano 9 1730

    [8]

    Yu M H, Wang Z K, Hou C, Wang Z L, Liang C L, Zhao C Y, Tong Y X, Lu X H, Yang S H 2017 Adv. Mater. 29 1602868

    [9]

    Zhou L, Zhao D Y, Lou X W 2012 Adv. Mater. 24 745

    [10]

    Liu B, Zhang J, Wang X F, Chen G, Chen D, Zhou C W, Shen G Z 2012 Nano Lett. 12 3005

    [11]

    Dubal D P, Ayyad O, Ruiz V, Gmez-Romero P 2015 Chem. Soc. Rev. 44 1777

    [12]

    Zhang C, Huang Y, Tang S L, Deng M S, Du Y W 2017 ACS Energy Lett. 2 759

    [13]

    Yuan C Z, Li J Y, Hou L R, Zhang X G, Shen L F, Lou X W 2012 Adv. Funct. Mater. 22 4592

    [14]

    Yuan C Z, Wu H B, Xie Y, Lou X W 2014 Angew. Chem. Int. Ed. 53 1488

    [15]

    Kang J L, Hirata A, Kang L J, Zhang X M, Hou Y, Chen L Y, Li C, Fujita T, Akagi K, Chen M W 2013 Angew. Chem. Int. Ed. 52 1664

    [16]

    Zhang J, Liu F, Cheng J P, Zhang X B 2015 ACS Appl. Mater. Inter. 7 17630

    [17]

    Zhu J X, Cao L J, Wu Y S, Gong Y J, Liu Z, Hoster H E, Zhang Y H, Zhang S T, Yang S B, Yan Q Y, Ajayan P M, Vajtai R 2013 Nano Lett. 13 5408

  • [1]

    Peng X, Peng L L, Wu C Z, Xie Y 2014 Chem. Soc. Rev. 43 3303

    [2]

    Lin T Q, Chen I W, Liu F X, Yang C Y, Bi H, Xu F F, Huang F Q 2015 Science 350 1508

    [3]

    Lang X Y, Hirata A, Fujita T, Chen M W 2011 Nat. Nanotechnol. 6 232

    [4]

    Guan C, Liu J L, Wang Y D, Mao L, Fan Z X, Shen Z X, Zhang H, Wang J 2015 ACS Nano 9 5198

    [5]

    Zhang G Q, Lou X W 2013 Adv. Mater. 25 976

    [6]

    Zhang C, Geng X P, Tang S L, Deng M S, Du Y W 2017 J. Mater. Chem. A 5 5912

    [7]

    Feng C, Zhang J F, He Y, Zhong C, Hu W B, Liu L, Deng Y D 2015 ACS Nano 9 1730

    [8]

    Yu M H, Wang Z K, Hou C, Wang Z L, Liang C L, Zhao C Y, Tong Y X, Lu X H, Yang S H 2017 Adv. Mater. 29 1602868

    [9]

    Zhou L, Zhao D Y, Lou X W 2012 Adv. Mater. 24 745

    [10]

    Liu B, Zhang J, Wang X F, Chen G, Chen D, Zhou C W, Shen G Z 2012 Nano Lett. 12 3005

    [11]

    Dubal D P, Ayyad O, Ruiz V, Gmez-Romero P 2015 Chem. Soc. Rev. 44 1777

    [12]

    Zhang C, Huang Y, Tang S L, Deng M S, Du Y W 2017 ACS Energy Lett. 2 759

    [13]

    Yuan C Z, Li J Y, Hou L R, Zhang X G, Shen L F, Lou X W 2012 Adv. Funct. Mater. 22 4592

    [14]

    Yuan C Z, Wu H B, Xie Y, Lou X W 2014 Angew. Chem. Int. Ed. 53 1488

    [15]

    Kang J L, Hirata A, Kang L J, Zhang X M, Hou Y, Chen L Y, Li C, Fujita T, Akagi K, Chen M W 2013 Angew. Chem. Int. Ed. 52 1664

    [16]

    Zhang J, Liu F, Cheng J P, Zhang X B 2015 ACS Appl. Mater. Inter. 7 17630

    [17]

    Zhu J X, Cao L J, Wu Y S, Gong Y J, Liu Z, Hoster H E, Zhang Y H, Zhang S T, Yang S B, Yan Q Y, Ajayan P M, Vajtai R 2013 Nano Lett. 13 5408

Metrics
  • Abstract views:  5039
  • PDF Downloads:  359
  • Cited By: 0
Publishing process
  • Received Date:  04 January 2017
  • Accepted Date:  16 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回