Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Resistance of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 under high voltage microsecond pulse induced breakdown

Liu Yi Yang Jia Li Xing Gu Wei Gao Zhi-Peng

Citation:

Resistance of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 under high voltage microsecond pulse induced breakdown

Liu Yi, Yang Jia, Li Xing, Gu Wei, Gao Zhi-Peng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ferroelectric ceramics have been widely used in lots of fields, such as mechanical-electric transducer, ferroelectric memory, and energy storage devices. The dielectric breakdown process of ferroelectric ceramic has received much attention for years, due to the fact that this issue is critical in many electrical applications. Though great efforts have been made, the mechanism of dielectric breakdown is still under debate. The reason is that the electrical breakdown is a complex process related to electrical, thermal, and light effects. In the present work, we investigate the breakdown process of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3(PZT95/5) ceramic, which is a kind of typical ferroelectric ceramic working in the high voltage environments. The high voltage pulse generator is used in the breakdown experiments to apply a square pulsed voltage with an amplitude of 10 kV and a width of 7 s. The resistivity change in the breakdown process is recorded by the high-frequency oscillograph in nano-second. The results show that there are two different breakdown types for our sample, i.e. body-breakdown and flashover. To better understand the breakdown mechanism of the PZT95/5 ceramic, the formation of the conductive channel in ceramic in the process is investigated by comparing the resistivity development in body-breakdown and flashover processes. The development of the conductive channel formation can be divided into three steps in body-breakdown. In the first step that lasts for the first 40 ns of breakdown, the conductive channel starts forming, with the equivalent resistance sharply decreasing to about 105 in the mean time. Then, i.e. in the second step, conductive path grows into a stable one with the equivalent resistance decreasing to the magneitude of about 102 . The resistance decreases slowly to about 130 in the third step, which means that the conductive channel is completely formed. The channel formation of flashover can also be divided into three steps. The first step is similar to that of body-breakdown, with the equivalent resistance decreasing to about 105 in about 40 ns. In the second step of flashover, the conductive path keeps growing into a stable one with the equivalent resistance decreasing to 102 , but with a different resistance changing rate from that in body-breakdown, and the resistance decreases slowly to about 20 in the end. Different behavior between the body-breakdown and the surface flashover can be explained by different carrier densities on the conductive paths in the two breakdown processes. In the body-breakdown, the carrier density in the conductive channel is higher than that in the surface flashover, which improves the electron transfer and reduces the resistance. This may explain the reason why the channel formation in body-breakdown is faster than in flashover. This study is helpful for further materials design and applications.
      Corresponding author: Yang Jia, whuyj168@126.com;z.p.gao@foxmail.com ; Gao Zhi-Peng, whuyj168@126.com;z.p.gao@foxmail.com
    • Funds: Project supported by the Science and Technology Foundation of National Key Laboratory of Shock Wave and Detonation Physics (Grant No. 2016Z-04).
    [1]

    Farouk A M 2014 High Voltage Engineering (Boca Raton: CRC press) pp299-349

    [2]

    Hemmert D, Holt S, Krile J 2007 Proceedings of 10th Annual Directed Energy Symposium Huntsville, USA, November 5-8, 2007 p5

    [3]

    Matsushima H, Okino H, Mochizuki K, Yamada R 2016 J. Appl. Phys. 119 154506

    [4]

    Kim S C, Heo H, Moon C, Nam S H 2016 IEEE Trans. Plasma Sci. 44 687

    [5]

    Du J F, Liu D, Bai Z, Yu Q 2016 Jpn. J. Appl. Phys. 55 054301

    [6]

    Shkuratov S I, Talantsev E F, Menon L, Temkin H, Baird J 2004 Rev. Sci. Instrum. 75 2766

    [7]

    Forster E O 1990 J. Phys. D Appl. Phys. 23 1507

    [8]

    Whitehead S 1953 Dielectric Breakdown of Solids (Oxford: Clarendon Press) pp37-54

    [9]

    Tu D M, Wang X S 1993 Acad. J. Xi'an Jiaotong Univ. 27 33 (in Chinese) [屠德民, 王新生 1993 西安交通大学学报 27 33]

    [10]

    Qu Y F 2007 Physical Behavior of Functional Ceramics (Beijing: Chemical Industry Press) pp107-118 (in Chinese) [曲远方 2007 功能陶瓷的物理性能 (北京: 化学工业出版社) 第107-118页]

    [11]

    Wang Y L 2003 Properties and Applications of Functional Ceramics (Beijing: Science Press) pp146-154 (in Chinese) [王永龄 2003功能陶瓷性能与应用(北京: 科学出版社) 第146-154页]

    [12]

    Han S M, Huh C S 2016 IEEE Trans. Plasma Sci. 44 1429

    [13]

    Hu Y H, Yao H Y, Yu Z J, Wang Y Z 2016 Rare Metal Mat. Eng. 45 571

    [14]

    Du J M, Zhang Y, Zhang F P, He H L, Wang H Y 2006 Acta Phys. Sin. 55 2584 (in Chinese) [杜金梅, 张毅, 张福平, 贺红亮, 王海晏 2006 物理学报 55 2584]

    [15]

    Lan C F, Nie H C, Chen X F, Wang J X, Wang G S, Dong X L, Liu Y S, He H L 2013 J. Inorg. Mater. 28 503 (in Chinese) [兰春锋, 聂恒昌, 陈学锋, 王军霞, 王根水, 董显林, 刘雨生, 贺红亮 2013 无机材料学报 28 503]

    [16]

    Hall D A, Evans J D S, Covey-Crump S J, Holloway R F, Oliver E C, Moria T, Withers P J 2010 Acta Mater. 58 6584

    [17]

    Wang J X, Wang J, Yang S Y, Bian L 2009 J. Lanzhou Univ. Technol. 35 22 (in Chinese) [王军霞, 王进, 杨世源, 边亮 2009 兰州理工大学学报 35 22]

    [18]

    Lysne P C 1977 J. Appl. Phys. 48 4565

    [19]

    Wen D Y, Lin Q W 1997 Detonation and Shock Waves 3 27 (in Chinese) [温殿英, 林其文 1997 爆轰波与冲击波 3 27]

    [20]

    Jiang Y X, Wang S Z, He H L 2014 Chin. J. High Pressure Phys. 28 680 (in Chinese) [蒋一萱, 王省哲, 贺红亮 2014 高压物理学报 28 680]

    [21]

    Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 物理学报 60 057701]

    [22]

    Pakhotin V A, Zakrevskii V A, Sudar N T 2015 Tech. Phys. 60 1149

    [23]

    He L, Ji Y Z, Liu G C 2007 J. Changchun Univ. 28 165 (in Chinese) [贺莉, 纪跃芝, 刘国彩 2007长春工业大学学报 28 165]

    [24]

    Zhang F H 2008 Ph. D. Dissertation (Xi'an: Shaanxi University of Science Technology) (in Chinese) [张方晖 2008 博士学位论文 (西安: 陕西科技大学)]

    [25]

    Lu Q M, Yang W H, Liu W D 2004 Nucl. Fusion Plasma Phys. 24 33

    [26]

    Slutsker A I, Hilyarov V L 2011 Phys. Solid State 53 1325

  • [1]

    Farouk A M 2014 High Voltage Engineering (Boca Raton: CRC press) pp299-349

    [2]

    Hemmert D, Holt S, Krile J 2007 Proceedings of 10th Annual Directed Energy Symposium Huntsville, USA, November 5-8, 2007 p5

    [3]

    Matsushima H, Okino H, Mochizuki K, Yamada R 2016 J. Appl. Phys. 119 154506

    [4]

    Kim S C, Heo H, Moon C, Nam S H 2016 IEEE Trans. Plasma Sci. 44 687

    [5]

    Du J F, Liu D, Bai Z, Yu Q 2016 Jpn. J. Appl. Phys. 55 054301

    [6]

    Shkuratov S I, Talantsev E F, Menon L, Temkin H, Baird J 2004 Rev. Sci. Instrum. 75 2766

    [7]

    Forster E O 1990 J. Phys. D Appl. Phys. 23 1507

    [8]

    Whitehead S 1953 Dielectric Breakdown of Solids (Oxford: Clarendon Press) pp37-54

    [9]

    Tu D M, Wang X S 1993 Acad. J. Xi'an Jiaotong Univ. 27 33 (in Chinese) [屠德民, 王新生 1993 西安交通大学学报 27 33]

    [10]

    Qu Y F 2007 Physical Behavior of Functional Ceramics (Beijing: Chemical Industry Press) pp107-118 (in Chinese) [曲远方 2007 功能陶瓷的物理性能 (北京: 化学工业出版社) 第107-118页]

    [11]

    Wang Y L 2003 Properties and Applications of Functional Ceramics (Beijing: Science Press) pp146-154 (in Chinese) [王永龄 2003功能陶瓷性能与应用(北京: 科学出版社) 第146-154页]

    [12]

    Han S M, Huh C S 2016 IEEE Trans. Plasma Sci. 44 1429

    [13]

    Hu Y H, Yao H Y, Yu Z J, Wang Y Z 2016 Rare Metal Mat. Eng. 45 571

    [14]

    Du J M, Zhang Y, Zhang F P, He H L, Wang H Y 2006 Acta Phys. Sin. 55 2584 (in Chinese) [杜金梅, 张毅, 张福平, 贺红亮, 王海晏 2006 物理学报 55 2584]

    [15]

    Lan C F, Nie H C, Chen X F, Wang J X, Wang G S, Dong X L, Liu Y S, He H L 2013 J. Inorg. Mater. 28 503 (in Chinese) [兰春锋, 聂恒昌, 陈学锋, 王军霞, 王根水, 董显林, 刘雨生, 贺红亮 2013 无机材料学报 28 503]

    [16]

    Hall D A, Evans J D S, Covey-Crump S J, Holloway R F, Oliver E C, Moria T, Withers P J 2010 Acta Mater. 58 6584

    [17]

    Wang J X, Wang J, Yang S Y, Bian L 2009 J. Lanzhou Univ. Technol. 35 22 (in Chinese) [王军霞, 王进, 杨世源, 边亮 2009 兰州理工大学学报 35 22]

    [18]

    Lysne P C 1977 J. Appl. Phys. 48 4565

    [19]

    Wen D Y, Lin Q W 1997 Detonation and Shock Waves 3 27 (in Chinese) [温殿英, 林其文 1997 爆轰波与冲击波 3 27]

    [20]

    Jiang Y X, Wang S Z, He H L 2014 Chin. J. High Pressure Phys. 28 680 (in Chinese) [蒋一萱, 王省哲, 贺红亮 2014 高压物理学报 28 680]

    [21]

    Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 物理学报 60 057701]

    [22]

    Pakhotin V A, Zakrevskii V A, Sudar N T 2015 Tech. Phys. 60 1149

    [23]

    He L, Ji Y Z, Liu G C 2007 J. Changchun Univ. 28 165 (in Chinese) [贺莉, 纪跃芝, 刘国彩 2007长春工业大学学报 28 165]

    [24]

    Zhang F H 2008 Ph. D. Dissertation (Xi'an: Shaanxi University of Science Technology) (in Chinese) [张方晖 2008 博士学位论文 (西安: 陕西科技大学)]

    [25]

    Lu Q M, Yang W H, Liu W D 2004 Nucl. Fusion Plasma Phys. 24 33

    [26]

    Slutsker A I, Hilyarov V L 2011 Phys. Solid State 53 1325

  • [1] Zheng Pei-Chao, Li Xiao-Juan, Wang Jin-Mei, Zheng Shuang, Zhao Huai-Dong. Quantitative analysis of Cu and Pb in Coptidis by reheated double pulse laser induced breakdown spectroscopy. Acta Physica Sinica, 2019, 68(12): 125202. doi: 10.7498/aps.68.20190148
    [2] Wang Hong-Guang, Liu Peng-Fei, Zhang Jian-Wei, Li Yong-Dong, Cao Yi-Bing, Sun Jun. Particle-in-cell simulation on effect of collector outgassing on relativistic backward oscillator. Acta Physica Sinica, 2019, 68(18): 185203. doi: 10.7498/aps.68.20190554
    [3] Tan Zhi-Zhong, Zhang Qing-Hua. Calculation of the equivalent resistance and impedance of the cylindrical network based on recursion-transform method. Acta Physica Sinica, 2017, 66(7): 070501. doi: 10.7498/aps.66.070501
    [4] Wu Yi-Qing, Liu Jin, Mo Xin-Xin, Sun Tong, Liu Mu-Hua. Quantitative analysis of chromium in vegetable oil by collinear double pulse laser-induced breakdown spectroscopy combined with dual-line internal standard method. Acta Physica Sinica, 2017, 66(5): 054206. doi: 10.7498/aps.66.054206
    [5] Jiang Zhao-Xiu, Wang Yong-Gang, Nie Heng-Chang, Liu Yu-Sheng. Effects of poling state and direction on domain switching and phase transformation of Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression. Acta Physica Sinica, 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [6] Wu You-Cheng, Liu Gao-Min, Dai Wen-Feng, Gao Zhi-Peng, He Hong-Liang, Hao Shi-Rong, Deng Jian-Jun. Dynamic resistivity of Pb(Zr0.95Ti0.05)O3 depolarized ferroelectric under shock wave compression. Acta Physica Sinica, 2017, 66(4): 047201. doi: 10.7498/aps.66.047201
    [7] Zhang Li, Lin Zhi-Yu, Luo Jun, Wang Shu-Long, Zhang Jin-Cheng, Hao Yue, Dai Yang, Chen Da-Zheng, Guo Li-Xin. High breakdown voltage lateral AlGaN/GaN high electron mobility transistor with p-GaN islands buried buffer layer for power applications. Acta Physica Sinica, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [8] Yue Shan, Liu Xing-Nan, Shi Zhen-Gang. Experimental study on breakdown voltage between parallel plates in high-pressure helium. Acta Physica Sinica, 2015, 64(10): 105101. doi: 10.7498/aps.64.105101
    [9] Jiang Zhao-Xiu, Xin Ming-Zhi, Shen Hai-Ting, Wang Yong-Gang, Nie Heng-Chang, Liu Yu-Sheng. Mechanical properties and phase transformation of porous unpoled Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression. Acta Physica Sinica, 2015, 64(13): 134601. doi: 10.7498/aps.64.134601
    [10] Li Shuang, Chang Chao, Wang Jian-Guo, Liu Yan-Sheng, Zhu Meng, Guo Le-Tian, Xie Jia-Ling. Suppression of secondary electron multipactor on dielectric surface in TM mode. Acta Physica Sinica, 2015, 64(13): 137701. doi: 10.7498/aps.64.137701
    [11] Chen Tian-Bing, Yao Ming-Yin, Liu Mu-Hua, Lin Yong-Zeng, Li Wen-Bing, Zheng Mei-Lan, Zhou Hua-Mao. Quantitative analysis of laser induced breakdown spectroscopy of Pb in navel orange based on multivariate calibration. Acta Physica Sinica, 2014, 63(10): 104213. doi: 10.7498/aps.63.104213
    [12] Zhou Dong-Fang, Yu Dao-Jie, Yang Jian-Hong, Hou De-Ting, Xia Wei, Hu Tao, Lin Jing-Yu, Rao Yu-Ping, Wei Jin-Jin, Zhang De-Wei, Wang Li-Ping. Theoretical and experimental investigation of air breakdown on single high power microwave based on the mixed-atmosphere propagation model. Acta Physica Sinica, 2013, 62(1): 014207. doi: 10.7498/aps.62.014207
    [13] Du Chuang, Gao Xun, Shao Yan, Song Xiao-Wei, Zhao Zhen-Ming, Hao Zuo-Qiang, Lin Jing-Quan. Analyses of heavy metals by soil using dual-pulsed laser induced breakdown spectroscopy. Acta Physica Sinica, 2013, 62(4): 045202. doi: 10.7498/aps.62.045202
    [14] Li Shi-Wen, Feng Guo-Ying, Li Wei, Han Jing-Hua, Zhou Sheng-Yang, Yin Jia-Jia, Yang Chao, Zhou Shou-Huan. Study on phase analysis of nanoparticles by high-voltage electrical explosion method of copper wire. Acta Physica Sinica, 2012, 61(22): 225206. doi: 10.7498/aps.61.225206
    [15] Feng Ning-Bo, Gu Yan, Liu Yu-Sheng, Nie Heng-Chang, Chen Xue-Feng, Wang Gen-Shui, He Hong-Liang, Dong Xian-Lin. Porosity effects on depoling characteristics of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics under shock wave load. Acta Physica Sinica, 2010, 59(12): 8897-8902. doi: 10.7498/aps.59.8897
    [16] Shi Wei, Tian Li-Qiang, Wang Xin-Mei, Xu Ming, Ma De-Ming, Zhou Liang-Ji, Liu Hong-Wei, Xie Wei-Ping. A high-voltage and high-current photoconductive semiconductor switch and its breakdown characteristics. Acta Physica Sinica, 2009, 58(2): 1219-1223. doi: 10.7498/aps.58.1219
    [17] Qiao Ming, Zhang Bo, Li Zhao-Ji, Fang Jian, Zhou Xian-Da. Analysis of the back-gate effect on the breakdown behavior of lateral high-voltage SOI transistors. Acta Physica Sinica, 2007, 56(7): 3990-3995. doi: 10.7498/aps.56.3990
    [18] Li Xiao, Zhang Hai-Ying, Yin Jun-Jian, Liu Liang, Xu Jing-Bo, Li Ming, Ye Tian-Chun, Gong Min. Research of breakdown characteristic of InP composite channel HEMT. Acta Physica Sinica, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [19] ZENG YAN-WEI, XUE WAN-RONG, FU GUO-FEI, ZHOU HENG-NAN. AN X Ray Diffraction STUDY ON THE ULTRA-HIGH ELECT-ROMECHANICAL ANISOTROPY IN (Pb0.85Sm0.10)(Ti0.98Mn0.02)O3 PIEZOELECTRIC CERAMICS. Acta Physica Sinica, 1991, 40(1): 70-77. doi: 10.7498/aps.40.70
    [20] ZHAO YU-LING, YAO YU-SHU, WANG WEN-KUI. HIGH-TEMPERATURE HIGH-PRESSURE SYNTHESIS OF PEROVSKITE-TYPE Pb(Zn1/3Nb2/3)O3. Acta Physica Sinica, 1978, 27(2): 224-225. doi: 10.7498/aps.27.224
Metrics
  • Abstract views:  3977
  • PDF Downloads:  131
  • Cited By: 0
Publishing process
  • Received Date:  12 December 2016
  • Accepted Date:  23 January 2017
  • Published Online:  05 June 2017

/

返回文章
返回