Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of multi-cavity dislocation distribution on thermal conductance in graphene nanoribbons

Zhou Xin Gao Ren-Bin Tan Shi-Hua Peng Xiao-Fang Jiang Xiang-Tao Bao Ben-Gang

Citation:

Influence of multi-cavity dislocation distribution on thermal conductance in graphene nanoribbons

Zhou Xin, Gao Ren-Bin, Tan Shi-Hua, Peng Xiao-Fang, Jiang Xiang-Tao, Bao Ben-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using non-equilibrium Green's function method and keeping the zigzag carbon chains unchanged, we investigate the transmission rate of acoustic phonon and the reduced thermal conductance in the graphene nanoribbons with three cavities. The results show that the reduced thermal conductance approaches to 32kB2 T/(3h) in the limit T0 K. Due to the fact that only long wavelength acoustic phonons with zero cutoff frequency are excited at such low temperatures, the scattering influence on the long wavelength acoustic phonons by the dislocation distribution of three cavities in the graphene nanoribbons can be ignored and these phonons can go through the scattering region perfectly. As the temperature goes up, the reduced thermal conductance decreases. This is because the high-frequency phonons are excited and these high-frequency phonons are scattered easily by the scattering structures. With the further rise of temperature, acoustic phonon modes with the cutoff frequency greater than zero are excited, which leads to a rapid increase of the reduced thermal conductance. This study shows that in higher frequency region, the transmission spectra display complex peak-dip structures, which results from the fact that in higher frequency region, more phonon modes are excited and scattered in the middle scattering region with three cavities, and the scattering phonons are coupled with the incident phonons. When the three cavities are aligned perpendicularly to the edge of the graphene nanoribbons, the scattering from low-frequency phonons by the scattering structures is smallest, which leads to the fact that the reduced thermal conductance is largest at low temperatures; however, at high temperatures, the reduced thermal conductance is smallest when the three cavities is aligned perpendicularly to the edge of the graphene nanoribbons. This is because the scattering from high-frequency phonons by the scattering structures is biggest. These results show that the acoustic phonon transport and the reduced thermal conductance are dependent on the relative position of the three cavities. In addition, the dislocation distribution of the three cavities can only modulate obviously the high-temperature thermal conductance of the in-plane modes (IPMs). This is because the change of the relative position of the quantum dots can only modulate greatly the high-frequency phonon transmission rate and less modulate the low-frequency phonon transmission rate of the IPMs. However, the dislocation distribution of the three cavities can adjust obviously not only the high-temperature thermal conductance of the flexural phonon modes (FPMs), but also the low-temperature thermal conductance of the FPMs. This is because the change of the relative position of the three cavities can modulate greatly phonon transmission rates of flexural phonon modes in the low-frequency and high-frequency regions. These results provide an effective theoretical basis for designing the thermal transport quantum devices based on graphene nanoribbons.
      Corresponding author: Peng Xiao-Fang, xiaofangpeng11@163.com;xtjiang@csuft.edu.cn ; Jiang Xiang-Tao, xiaofangpeng11@163.com;xtjiang@csuft.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11247030, 61272147, 61602529), the Hunan Provincial Natural Science Foundation, China (Grant No. 14JJ4054), the Research Foundation of Hunan Provincial Education Department, China (Grant Nos. 12B136, 12C0446), the Talent Introducing Foundation of Central South University of Forestry and Technology, China (Grant No. 104-0160), and the Scientific Innovation Fund for Graduate of Central South University of Forestry and Technology, China (Grant No. CX2016B26).
    [1]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [2]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) [陈晓彬, 段文晖 2015 物理学报 64 186302]

    [3]

    Zhai X C, Qi F H, Xu Y F, Zhou X F, Jin G J 2015 Prog. Phys. 35 1 (in Chinese) [翟学超, 戚凤华, 许亚芳, 周兴飞, 金国钧 2015 物理学进展 35 1]

    [4]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [6]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491

    [7]

    Balandin A A 2011 Nat. Mater. 10 569

    [8]

    Peng X F, Wang X J, Gong Z Q, Chen K Q 2011 Appl. Phys. Lett. 99 233105

    [9]

    Peng X F, Zhou X, Tan S H, Wang X J, Chen K Q 2017 Carbon 113 334

    [10]

    Tan S H, Tang L M, Xie Z X, Pan C N, Chen K Q 2013 Carbon 65 181

    [11]

    Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Appl. Phys. Lett. 109 023101

    [12]

    Chen K Q, Li W X, Duan W, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422

    [13]

    Peng X F, Chen K Q, Wan Q, Zou B S, Duan W 2010 Phys. Rev. B 81 195317

    [14]

    Xu Y, Chen X, Wang J S, Gu B L, Duan W 2010 Phys. Rev. B 81 195425

    [15]

    Xu Y, Li Z, Duan W 2014 Small 10 2182

    [16]

    Xu W, Zhang G, Li B 2015 J. Chem. Phys. 143 154703

    [17]

    Xu Y, Tang P, Zhang S C 2015 Phys. Rev. B 92 081112

    [18]

    Peng X F, Chen K Q 2014 Carbon 77 360

    [19]

    Peng X F, Chen K Q 2016 Carbon 100 36

    [20]

    Yao H F, Xie Y E, Ou Y T, Chen Y P 2013 Acta Phys. Sin. 62 068102 (in Chinese) [姚海峰, 谢月娥, 欧阳滔, 陈元平 2013 物理学报 62 068102]

    [21]

    Hua Y C, Cao B Y 2015 Acta Phys. Sin. 64 146501 (in Chinese) [华钰超, 曹炳阳 2015 物理学报 64 146501]

    [22]

    Ouyang F P, Xu H, Li M J 2008 Acta Phys. Chim. Sin. 24 328 (in Chinese) [欧阳方平, 徐慧, 李明君 2008 物理化学学报 24 328]

    [23]

    Huang W Q, Huang G F, Wang L L, Huang B Y 2007 Phys. Rev. B 75 233415

    [24]

    Bao Z G, Chen Y P, Ouyang T, Yang K K, Zhong J X 2011 Acta Phys. Sin. 60 028103 (in Chinese) [鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新 2011 物理学报 60 028103]

    [25]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [26]

    Peng X F, Wang X J, Chen L Q, Chen K Q 2012 Europhys. Lett. 98 56001

    [27]

    Ouyang T, Chen Y, Xie Y 2010 Phys. Rev. B 82 245403

    [28]

    Yang N, Zhang G, Li B 2009 Appl. Phys. Lett. 95 033107

    [29]

    Liu X J, Zhang G, Zhang Y W 2016 Nano Lett. 16 4954

    [30]

    Sevincli H, Cuniberti G 2010 Phys. Rev. B 81 113401

    [31]

    Ouyang T, Chen Y, Xie Y, Stocks G M, Zhong J X 2011 Appl. Phys. Lett. 99 233101

    [32]

    Zhu T, Ertekin E 2014 Phys. Rev. B 90 195209

    [33]

    Ouyang T, Chen Y P, Yang K K, Zhong J X 2009 Europhys. Lett. 88 28002

    [34]

    Chen J, Zhang G, Li B 2013 Nanoscale 5 532

    [35]

    Chen J, Walther J H, Koumoutsakos P 2014 Nano Lett. 14 819

    [36]

    Peng X F, Xiong C, Wang X J, Chen L Q, Luo Y F, Li J B 2013 Comput. Mater. Sci. 77 440

    [37]

    Pan C N, Xie Z X, Tang L M, Chen K Q 2012 Appl. Phys. Lett. 101 103115

    [38]

    Zheng H, Liu H J, Tan X J, L H Y, Pan L, Shi J, Tang X F 2012 Appl. Phys. Lett. 100 093104

    [39]

    Huang W, Wang J S, Liang G 2011 Phys. Rev. B 84 045410

    [40]

    Hu J, Wang Y, Vallabhaneni A, Ruan X, Chen Y P 2011 Phys. Rev. B 99 113101

    [41]

    Xie Z X, Chen K Q, Duan W H 2011 J. Phys. -Condens. Matter 23 315302

    [42]

    Bretin M S, Malyshev A V, Orellana P A, Dominguez Adame F 2015 Phys. Rev. B 91 085431

    [43]

    Xu Y, Chen X, Gu B L, Duan W 2009 Appl. Phys. Lett. 95 233116

  • [1]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [2]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) [陈晓彬, 段文晖 2015 物理学报 64 186302]

    [3]

    Zhai X C, Qi F H, Xu Y F, Zhou X F, Jin G J 2015 Prog. Phys. 35 1 (in Chinese) [翟学超, 戚凤华, 许亚芳, 周兴飞, 金国钧 2015 物理学进展 35 1]

    [4]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [6]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491

    [7]

    Balandin A A 2011 Nat. Mater. 10 569

    [8]

    Peng X F, Wang X J, Gong Z Q, Chen K Q 2011 Appl. Phys. Lett. 99 233105

    [9]

    Peng X F, Zhou X, Tan S H, Wang X J, Chen K Q 2017 Carbon 113 334

    [10]

    Tan S H, Tang L M, Xie Z X, Pan C N, Chen K Q 2013 Carbon 65 181

    [11]

    Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Appl. Phys. Lett. 109 023101

    [12]

    Chen K Q, Li W X, Duan W, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422

    [13]

    Peng X F, Chen K Q, Wan Q, Zou B S, Duan W 2010 Phys. Rev. B 81 195317

    [14]

    Xu Y, Chen X, Wang J S, Gu B L, Duan W 2010 Phys. Rev. B 81 195425

    [15]

    Xu Y, Li Z, Duan W 2014 Small 10 2182

    [16]

    Xu W, Zhang G, Li B 2015 J. Chem. Phys. 143 154703

    [17]

    Xu Y, Tang P, Zhang S C 2015 Phys. Rev. B 92 081112

    [18]

    Peng X F, Chen K Q 2014 Carbon 77 360

    [19]

    Peng X F, Chen K Q 2016 Carbon 100 36

    [20]

    Yao H F, Xie Y E, Ou Y T, Chen Y P 2013 Acta Phys. Sin. 62 068102 (in Chinese) [姚海峰, 谢月娥, 欧阳滔, 陈元平 2013 物理学报 62 068102]

    [21]

    Hua Y C, Cao B Y 2015 Acta Phys. Sin. 64 146501 (in Chinese) [华钰超, 曹炳阳 2015 物理学报 64 146501]

    [22]

    Ouyang F P, Xu H, Li M J 2008 Acta Phys. Chim. Sin. 24 328 (in Chinese) [欧阳方平, 徐慧, 李明君 2008 物理化学学报 24 328]

    [23]

    Huang W Q, Huang G F, Wang L L, Huang B Y 2007 Phys. Rev. B 75 233415

    [24]

    Bao Z G, Chen Y P, Ouyang T, Yang K K, Zhong J X 2011 Acta Phys. Sin. 60 028103 (in Chinese) [鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新 2011 物理学报 60 028103]

    [25]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [26]

    Peng X F, Wang X J, Chen L Q, Chen K Q 2012 Europhys. Lett. 98 56001

    [27]

    Ouyang T, Chen Y, Xie Y 2010 Phys. Rev. B 82 245403

    [28]

    Yang N, Zhang G, Li B 2009 Appl. Phys. Lett. 95 033107

    [29]

    Liu X J, Zhang G, Zhang Y W 2016 Nano Lett. 16 4954

    [30]

    Sevincli H, Cuniberti G 2010 Phys. Rev. B 81 113401

    [31]

    Ouyang T, Chen Y, Xie Y, Stocks G M, Zhong J X 2011 Appl. Phys. Lett. 99 233101

    [32]

    Zhu T, Ertekin E 2014 Phys. Rev. B 90 195209

    [33]

    Ouyang T, Chen Y P, Yang K K, Zhong J X 2009 Europhys. Lett. 88 28002

    [34]

    Chen J, Zhang G, Li B 2013 Nanoscale 5 532

    [35]

    Chen J, Walther J H, Koumoutsakos P 2014 Nano Lett. 14 819

    [36]

    Peng X F, Xiong C, Wang X J, Chen L Q, Luo Y F, Li J B 2013 Comput. Mater. Sci. 77 440

    [37]

    Pan C N, Xie Z X, Tang L M, Chen K Q 2012 Appl. Phys. Lett. 101 103115

    [38]

    Zheng H, Liu H J, Tan X J, L H Y, Pan L, Shi J, Tang X F 2012 Appl. Phys. Lett. 100 093104

    [39]

    Huang W, Wang J S, Liang G 2011 Phys. Rev. B 84 045410

    [40]

    Hu J, Wang Y, Vallabhaneni A, Ruan X, Chen Y P 2011 Phys. Rev. B 99 113101

    [41]

    Xie Z X, Chen K Q, Duan W H 2011 J. Phys. -Condens. Matter 23 315302

    [42]

    Bretin M S, Malyshev A V, Orellana P A, Dominguez Adame F 2015 Phys. Rev. B 91 085431

    [43]

    Xu Y, Chen X, Gu B L, Duan W 2009 Appl. Phys. Lett. 95 233116

  • [1] Wu Cheng-Wei, Ren Xue, Zhou Wu-Xing, Xie Guo-Feng. Theoretical study of anisotropy and ultra-low thermal conductance of porous graphene nanoribbons. Acta Physica Sinica, 2022, 71(2): 027803. doi: 10.7498/aps.71.20211477
    [2] He Yan-Bin, Bai Xi. Electron transport of one-dimensional non-conjugated (CH2)n molecule chain coupling to graphene electrode. Acta Physica Sinica, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [3] Theoretical Study on Anisotropy and Ultra-low Thermal Conductance of Porous Graphene nanoribbons. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211477
    [4] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [5] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang. First-principle study on quantum thermal transport in a polythiophene chain. Acta Physica Sinica, 2018, 67(2): 026501. doi: 10.7498/aps.67.20171198
    [6] Qing Qian-Jun, Zhou Xin, Xie Fang, Chen Li-Qun, Wang Xin-Jun, Tan Shi-Hua, Peng Xiao-Fang. Characteristics of acoustic phonon transport and thermal conductance in multi-terminal graphene junctions. Acta Physica Sinica, 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [7] Bai Ji-Yuan, He Ze-Long, Li Li, Han Gui-Hua, Zhang Bin-Lin, Jiang Ping-Hui, Fan Yu-Huan. Electron transport through a two-terminal Aharonov-Bohm interferometer coupled with linear di-quantum dot molecules. Acta Physica Sinica, 2015, 64(20): 207304. doi: 10.7498/aps.64.207304
    [8] Chen Xiao-Bin, Duan Wen-Hui. Quantum thermal transport and spin thermoelectrics in low-dimensional nano systems: application of nonequilibrium Green's function method. Acta Physica Sinica, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [9] He Ze-Long, Bai Ji-Yuan, Li Peng, Lü Tian-Quan. Electron transport through T-shaped double quantum dot molecule Aharonov-Bohm interferometer. Acta Physica Sinica, 2014, 63(22): 227304. doi: 10.7498/aps.63.227304
    [10] Bai Ji-Yuan, He Ze-Long, Yang Shou-Bin. Charge and spin transport through parallel-coupled double-quantum-dot molecule A-B interferometer. Acta Physica Sinica, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [11] Yao Hai-Feng, Xie Yue-E, Ouyang Tao, Chen Yuan-Ping. Thermal transport of graphene nanoribbons embedding linear defects. Acta Physica Sinica, 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [12] Peng Xiao-Fang, Chen Li-Qun, Luo Yong-Feng, Liu Lin-Hong, Wang Kai-Jun. Acoustic phonon transport and thermal conductance in quantum waveguide with abrupt quantum junctions modulated with double T-shapedquantum structure. Acta Physica Sinica, 2013, 62(5): 056805. doi: 10.7498/aps.62.056805
    [13] An Xing-Tao, Mu Hui-Ying, Xian Li-Fen, Liu Jian-Jun. Spin-polarized transport through double quantum-dot-array. Acta Physica Sinica, 2012, 61(15): 157201. doi: 10.7498/aps.61.157201
    [14] Bao Zhi-Gang, Chen Yuan-Ping, Ouyang Tao, Yang Kai-Ke, Zhong Jian-Xin. Thermal transport in L-shaped graphene nano-junctions. Acta Physica Sinica, 2011, 60(2): 028103. doi: 10.7498/aps.60.028103
    [15] Nie Liu-Ying, Li Chun-Xian, Zhou Xiao-Ping, Cheng Fang, Wang Cheng-Zhi. Effects of controllable defects on thermal conductance in a nanowire with a quantum box. Acta Physica Sinica, 2011, 60(11): 116301. doi: 10.7498/aps.60.116301
    [16] Ye Fu-Qiu, Li Ke-Min, Peng Xiao-Fang. Ballistic phonon transport and thermal conductance in multi-channel quantum structure at low temperatures. Acta Physica Sinica, 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [17] Peng Xiao-Fang, Wang Xin-Jun, Gong Zhi-Qiang, Chen Li-Qun. Acoustic phonon transport and thermal conductance in one-dimensional quantum waveguide modulated with quantum dots. Acta Physica Sinica, 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [18] Yin Yong-Qi, Li Hua, Ma Jia-Ning, He Ze-Long, Wang Xuan-Zhang. Quantum transport of multi-terminal coupled-quantum-dot-molecular bridge. Acta Physica Sinica, 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
    [19] Yao Ling-Jiang, Wang Ling-Ling. Characteristics of acoustic phonon transport and thermal conductance in quasi-one-dimensional quantum waveguides with semi-circular-arc cavity. Acta Physica Sinica, 2008, 57(5): 3100-3106. doi: 10.7498/aps.57.3100
    [20] Dai Zhen-Hong, Ni Jun. Electron transport in multi-terminal quantum chain systems based on the Green’s functions. Acta Physica Sinica, 2005, 54(7): 3342-3345. doi: 10.7498/aps.54.3342
Metrics
  • Abstract views:  4601
  • PDF Downloads:  194
  • Cited By: 0
Publishing process
  • Received Date:  22 February 2017
  • Accepted Date:  31 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回