Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DNA self-assembly-based fabrication of metallic nanostructures and related nanophotonics

Zhang Yi-Nan Wang Li-Hua Liu Hua-Jie Fan Chun-Hai

Citation:

DNA self-assembly-based fabrication of metallic nanostructures and related nanophotonics

Zhang Yi-Nan, Wang Li-Hua, Liu Hua-Jie, Fan Chun-Hai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Nanophotonics focuses on the study of the behavior of light and the interaction between light and matter on a nanometer scale. It has often involved metallic nanostructures which can concentrate and guide the light beyond the diffraction limit due to the unique surface plasmons (SPs). Manipulation of light can be accomplished through controlling the morphologies and components of metallic nanostructures to incur special surface plasmons. However, it is still a severe challenge to achieve exquisite control over the morphologies or components of metallic nanostructures: chemical methods can provide anisotropic but highly symmetric metallic nanostructures; lithographic methods have a limited resolution, especially for three-dimensional metallic nanostructures. By comparison, DNA self-assembly-based fabrication of metallic nanostructures is not restricted to these confinements. With the high-fidelity Waston-Crick base pairing, DNA can self-assemble into arbitrary shapes ranging from the simplest double strands to the most sophisticated DNA origami. Due to the electrostatic interactions between negatively charged phosphate backbones and positively charged metal ions, DNA of any shapes can affect the metal ions or atoms to a certain degree. Depending on the shape and base, DNA self-assembly nanostructures can exert different influences on the growth of metallic nanoparticles, which in turn gives rise to deliberately controllable metallic nanostructures. Besides, DNA self-assembly nanostructures can act as ideal templates for the organization of metallic nanoparticles to construct special metallic nanostructures. In this case, DNA-modified metallic nanoparticles are immobilized on DNA self-assembly nanostructures carrying complementary sticky ends. The geometry and component arrangements of metallic nanostructures both can be precisely dictated on the DNA nanostructures by programming the sticky end arrays. Complicated metallic nanostructures which can be hardly fabricated with conventional chemical or lithographic methods have been readily prepared with the DNA self-assembly-based fabrication method, thereby greatly promoting the development of nanophotonics. Therefore, the studies of DNA self-assembly-based fabrication of metallic nanostructures and related nanophotonics have received rapidly growing attention in recent years. This review first gives a brief introduction of the mechanism for breaking the diffraction limit of light with metallic nanostructures based on SPs. Then we give a systematic review on DNA self-assembly-based fabrication of metallic nanostructures and related nanophotonics, which is divided into several parts according to the different pathways by which DNA self-assembly can influence the morphologies or components of metallic nanostructures. Finally, the remaining problems and limitations for the existing DNA self-assembly-based fabrication of metallic nanostructures are presented and an outlook on the future trend of the field is given as well.
      Corresponding author: Liu Hua-Jie, liuhuajie@sinap.ac.cn;fchh@sinap.ac.cn ; Fan Chun-Hai, liuhuajie@sinap.ac.cn;fchh@sinap.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB932803), the National Natural Science Foundation of China (Grant Nos. 21473236, 31371015), and the Youth Innovation Promotion Association of Chinese Academy of Sciences.
    [1]

    Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193

    [2]

    Braun E, Eichen Y, Sivan U, Ben-Yoseph G 1998 Nature 391 775

    [3]

    Wang Z, Tang L, Tan L H, Li J, Lu Y 2012 Angew. Chem. Int. Ed. 51 9078

    [4]

    Lee J H, Kim G H, Nam J M 2012 J. Am. Chem. Soc. 134 5456

    [5]

    Song T, Tang L, Tan L H, Wang X, Satyavolu N S, Xing H, Wang Z, Li J, Liang H, Lu Y 2015 Angew. Chem. Int. Ed. 54 8114

    [6]

    Alivisatos A P, Johnsson K P, Peng X, Wilson T E, Loweth C J, Bruchez M P, Schultz Jr P G 1996 Nature 382 609

    [7]

    Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J 1996 Nature 382 607

    [8]

    Pinheiro A V, Han D, Shih W M, Yan H 2011 Nat. Nanotechnol. 6 763

    [9]

    Chao J, Zhang Y, Zhu D, Liu B, Cui C, Su S, Fan C, Wang L 2016 Sci. China: Chem. 59 730

    [10]

    Lan X, Lu X, Shen C, Ke Y, Ni W, Wang Q 2015 J. Am. Chem. Soc. 137 457

    [11]

    Acuna G, Moller F, Holzmeister P, Beater S, Lalkens B, Tinnefeld P 2012 Science 338 506

    [12]

    Murphy C J, Thompson L B, Chernak D J, Yang J A, Sivapalan S T, Boulos S P, Huang J Y, Alkilany A M, Sisco P N 2011 Curr. Opin. Colloid Interf. Sci. 16 128

    [13]

    Feng L, Romulus J, Li M, Sha R, Royer J, Wu K T, Xu Q, Seeman N C, Weck M, Chaikin P 2013 Nat. Mater. 12 747

    [14]

    Hedrick J L, Brown K A, Kluender E J, Cabezas M D, Chen P C, Mirkin C A 2016 ACS Nano 10 3144

    [15]

    Kumar A, Hwang J H, Kumar S, Nam J M 2013 Chem. Commun. 49 2597

    [16]

    Tan S J, Campolongo M J, Luo D, Cheng W 2011 Nat. Nanotechnol. 6 268

    [17]

    Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller M, Hogele A, Simmel F, Govorov O, Liedl T 2012 Nature 483 311

    [18]

    Thacker V V, Herrmann L O, Sigle D O, Zhang T, Liedl T, Baumberg J J, Keyser U F 2014 Nat. Commun. 5 3448

    [19]

    Roller E M, Khorashad L K, Fedoruk M, Schreiber R, Govorov O, Liedl T 2015 Nano Lett. 15 1368

    [20]

    Kallenbach N R, Ma R I, Seeman N C 1983 Nature 305 829

    [21]

    Seeman N C 2003 Nature 421 427

    [22]

    Rothemund P W 2006 Nature 440 297

    [23]

    Nangreave J, Han D, Liu Y, Yan H 2010 Curr. Opin. Chem. Biol. 14 608

    [24]

    Chen J, Seeman N C 1991 Nature 350 631

    [25]

    Fu T, Seeman N C 1993 Biochemistry 32 3211

    [26]

    Mao C D, Sun W, Seeman N C 1997 Nature 386 137

    [27]

    Ma R I, Kallenbach N R, Sheardy R D, Petrillo M L, Seeman N C 1986 Nucl. Acids Res. 14 9745

    [28]

    Wang X, Seeman N C 2007 J. Am. Chem. Soc. 129 8169

    [29]

    LaBean T H, Yan H, Kopatsch J, Liu F R, Winfree E, Reif J H, Seeman N C 2000 J. Am. Chem. Soc. 122 1848

    [30]

    Yan H, Park S H, Finkelstein G, Reif J H, LaBean T H 2003 Science 301 1882

    [31]

    Yin P, Hariadi R F, Sahu S, Choi H M, Park S H, Labean T H, Reif J H 2008 Science 321 824

    [32]

    Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M 2009 Nature 459 414

    [33]

    Ke Y, Douglas S M, Liu M, Sharma J, Cheng A, Leung A, Liu Y, Shih W M, Yan H 2009 J. Am. Chem. Soc. 131 15903

    [34]

    Liedl T, Hogberg B, Tytell J, Ingber D E, Shih W M 2010 Nat. Nanotechnol. 5 520

    [35]

    Veneziano R, Ratanalert S, Zhang K, Zhang F, Yan H, Chiu W, Bathe M 2016 Science 352 1534

    [36]

    Benson E, Mohammed A, Gardell J, Masich S, Czeizler E, Orponen P, Hogberg B 2015 Nature 523 441

    [37]

    Wang Z, Zhang J, Ekman J M, Kenis P J, Lu Y 2010 Nano Lett. 10 1886

    [38]

    Tan L H, Yue Y, Satyavolu N S, Ali A S, Wang Z, Wu Y, Lu Y 2015 J. Am. Chem. Soc. 137 14456

    [39]

    Wu J, Tan L H, Hwang K, Xing H, Wu P, Li W, Lu Y 2014 J. Am. Chem. Soc. 136 15195

    [40]

    Satyavolu N S, Tan L H, Lu Y 2016 J. Am. Chem. Soc. 138 16542

    [41]

    Shen J, Xu L, Wang C, Pei H, Tai R, Song S, Huang Q, Fan C, Chen G 2014 Angew. Chem. Int. Ed. 53 8338

    [42]

    Lee J H, You M H, Kim G H, Nam J M 2014 Nano Lett. 14 6217

    [43]

    Shen J, Su J, Yan J, Zhao B, Wang D, Wang S, Li K, Liu M, He Y, Mathur S, Fan C, Song S 2014 Nano Res. 8 731

    [44]

    Xu L, Wang G, Shen J, Geng H, Li W, Wu L, Gao S, Wang J, Wang L, Fan C, Chen G 2016 Nanoscale 8 9337

    [45]

    Lim D K, Jeon K S, Hwang J H, Kim H, Kwon S, Suh Y D, Nam J M 2011 Nat. Nanotechnol. 6 452

    [46]

    Zhao B, Shen J, Chen S, Wang D, Li F, Mathur S, Song S, Fan C 2014 Chem. Sci. 5 4460

    [47]

    Hu C, Shen J, Yan J, Zhong J, Qin W, Liu R, Aldalbahi A, Zuo X, Song S, Fan C, He D 2016 Nanoscale 8 2090

    [48]

    Li J, Wei C, Ma W, An Q, Guo J, Hu J, Wang C 2012 J. Mater. Chem. 22 12100

    [49]

    Monson C F, Woolley A T 2003 Nano Lett. 3 359

    [50]

    Gu Q, Cheng C, Haynie D T 2005 Nanotechnology 16 1358

    [51]

    Liu D, Park S H, Reif J H, LaBean T H 2004 Proc. Natl. Acad. Sci. USA 101 717

    [52]

    Liu J, Geng Y, Pound E, Gyawali S, Ashton J R, Hickey J, Woolley A T, Harb J N 2011 ACS Nano 5 2240

    [53]

    Geng Y, Pearson A C, Gates E P, Uprety B, Davis R C, Harb J N, Woolley A T 2013 Langmuir 29 3482

    [54]

    Pilo-Pais M, Goldberg S, Samano E, Labean T H, Finkelstein G 2011 Nano Lett. 11 3489

    [55]

    Pal S, Varghese R, Deng Z, Zhao Z, Kumar A, Yan H, Liu Y 2011 Angew. Chem. Int. Ed. 50 4176

    [56]

    Xiao S J, Liu F R, Rosen A E, Hainfeld J F, Seeman N C, Musier-Forsyth K, Kiehl R A 2002 J. Nanopart. Res. 4 313

    [57]

    Zheng J, Constantinou P E, Micheel C, Alivisatos A P, Kiehl R A, Seeman N C 2006 Nano Lett. 6 1502

    [58]

    Sharma J, Chhabra R, Liu Y, Ke Y, Yan H 2006 Angew. Chem. Int. Ed. 45 730

    [59]

    Le J D, Pinto Y, Seeman N C, Musier-Forsyth K, Taton T A, Kiehl R A 2004 Nano Lett. 4 2343

    [60]

    Zhang J, Liu Y, Ke Y, Yan H 2006 Nano Lett. 6 248

    [61]

    Zhang C, Li X, Tian C, Yu G, Li Y, Jiang W, Mao C 2014 ACS Nano 8 1130

    [62]

    Li Y, Liu Z, Yu G, Jiang W, Mao C 2015 J. Am. Chem. Soc. 137 4320

    [63]

    Aldaye F A, Sleiman H F 2007 J. Am. Chem. Soc. 129 4130

    [64]

    Elbaz J, Cecconello A, Fan Z, Govorov A O, Willner I 2013 Nat. Commun. 4 2000

    [65]

    Ding B, Cabrini S, Zuckermann R, Bokor J 2009 J. Vac. Sci. Technol. B 27 184

    [66]

    Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H 2009 Science 323 112

    [67]

    Sharma J, Chhabra R, Andersen C S, Gothelf K V, Yan H, Liu Y 2008 J. Am. Chem. Soc. 130 7820

    [68]

    Ding B, Deng Z, Yan H, Cabrini S, Zuckermann R, Bokor J 2010 J. Am. Chem. Soc. 132 3248

    [69]

    Pal S, Deng Z, Ding B, Yan H, Liu Y 2010 Angew. Chem. Int. Ed. 49 2700

    [70]

    Pal S, Deng Z, Wang H, Zou S, Liu Y, Yan H 2011 J. Am. Chem. Soc. 133 17606

    [71]

    Schreiber R, Do J, Roller E M, Zhang T, Schuller V J, Nickels P C, Feldmann J, Liedl T 2014 Nat. Nanotechnol. 9 74

    [72]

    Puchkova A, Vietz C, Pibiri E, Wunsch B, Sanz M, Acuna P, Tinnefeld P 2015 Nano Lett. 15 8354

    [73]

    Ko S H, Du K, Liddle J A 2013 Angew. Chem. Int. Ed. 52 1193

    [74]

    Pellegrotti J V, Acuna G P, Puchkova A, Holzmeister P, Gietl A, Lalkens B, Stefani D, Tinnefeld P 2014 Nano Lett. 14 2831

    [75]

    Lan X, Chen Z, Dai G, Lu X, Ni W, Wang Q 2013 J. Am. Chem. Soc. 135 11441

    [76]

    Urban J, Dutta K, Wang P, Duan X, Shen X, Ding B, Ke Y, Liu N 2016 J. Am. Chem. Soc. 138 5495

    [77]

    Shen C, Lan X, Zhu C, Zhang W, Wang L, Wang Q 2017 Adv. Mater. 29 1606533

    [78]

    Zhang Y, Chao J, Liu H, Wang F, Su S, Liu B, Zhang L, Shi J, Wang L, Huang W, Wang L, Fan C 2016 Angew. Chem. Int. Ed. 55 8036

    [79]

    Kuzyk A, Schreiber R, Zhang H, Govorov O, Liedl T, Liu N 2014 Nat. Mater. 13 862

    [80]

    Zhou C, Duan X, Liu N 2015 Nat. Commun. 6 8102

    [81]

    Urban J, Zhou C, Duan X, Liu N 2015 Nano Lett. 15 8392

    [82]

    Kuhler P, Roller M, Schreiber R, Liedl T, Lohmuller T, Feldmann J 2014 Nano Lett. 14 2914

    [83]

    Simoncelli S, Roller E M, Urban P, Schreiber R, Turberfield A J, Liedl T, Lohmuller T 2016 ACS Nano 10 9809

    [84]

    Roller M, Argyropoulos C, Hogele A, Liedl T, Pilo-Pais M 2016 Nano Lett. 16 5962

    [85]

    Weller L, Thacker V, Herrmann O, Hemmig A, Lombardi A, Keyser F, Baumberg J 2016 ACS Photon. 3 1589

    [86]

    Zhan P, Dutta P K, Wang P, Song G, Dai M, Zhao S X, Wang Z G, Yin P, Zhang W, Ding B, Ke Y 2017 ACS Nano 11 1172

    [87]

    Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60

    [88]

    Yan W, Xu L, Xu C, Ma W, Kuang H, Wang L, Kotov N A 2012 J. Am. Chem. Soc. 134 15114

    [89]

    Li K, Wang K, Qin W, Deng S, Li D, Shi J, Huang Q, Fan C 2015 J. Am. Chem. Soc. 137 4292

    [90]

    Lee K, Cui Y, Lee L P, Irudayaraj J 2014 Nat. Nanotechnol. 9 474

    [91]

    Macfarlane R J, Lee B, Jones M R, Harris N, Schatz G C, Mirkin C A 2011 Science 334 204

    [92]

    Senesi A J, Eichelsdoerfer D J, Macfarlane R J, Jones M R, Auyeung E, Lee B, Mirkin C A 2013 Angew. Chem. Int. Ed. 52 6624

    [93]

    Jones M R, Macfarlane R J, Lee B, Zhang J, Young K L, Senesi A J, Mirkin C A 2010 Nat. Mater. 9 913

    [94]

    Auyeung E, Cutler J I, Macfarlane R J, Jones M R, Wu J S, Liu G, Zhang K, Osberg K D, Mirkin C A 2012 Nat. Nanotechnol. 7 24

    [95]

    Auyeung E, Li T I, Senesi A J, Schmucker A L, Pals B C, de la Cruz M O, Mirkin C A 2014 Nature 505 73

    [96]

    Kim Y, Macfarlane R J, Jones M R, Mirkin C A 2016 Science 351 579

    [97]

    Maye M M, Kumara M T, Nykypanchuk D, Sherman W B, Gang O 2010 Nat. Nanotechnol. 5 116

    [98]

    Zhang Y, Pal S, Srinivasan B, Vo T, Kumar S, Gang O 2015 Nat. Mater. 14 840

    [99]

    Liu W, Tagawa M, Xin H L, Wang T, Emamy H, Li H, Yager K G, Starr F W, Tkachenko A V, Gang O 2016 Science 351 582

    [100]

    Gopinath A, Miyazono E, Faraon A, Rothemund P W 2016 Nature 535 401

    [101]

    Hung A M, Micheel C M, Bozano L D, Osterbur L W, Wallraff G M, Cha J N 2010 Nat. Nanotechnol. 5 121

  • [1]

    Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193

    [2]

    Braun E, Eichen Y, Sivan U, Ben-Yoseph G 1998 Nature 391 775

    [3]

    Wang Z, Tang L, Tan L H, Li J, Lu Y 2012 Angew. Chem. Int. Ed. 51 9078

    [4]

    Lee J H, Kim G H, Nam J M 2012 J. Am. Chem. Soc. 134 5456

    [5]

    Song T, Tang L, Tan L H, Wang X, Satyavolu N S, Xing H, Wang Z, Li J, Liang H, Lu Y 2015 Angew. Chem. Int. Ed. 54 8114

    [6]

    Alivisatos A P, Johnsson K P, Peng X, Wilson T E, Loweth C J, Bruchez M P, Schultz Jr P G 1996 Nature 382 609

    [7]

    Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J 1996 Nature 382 607

    [8]

    Pinheiro A V, Han D, Shih W M, Yan H 2011 Nat. Nanotechnol. 6 763

    [9]

    Chao J, Zhang Y, Zhu D, Liu B, Cui C, Su S, Fan C, Wang L 2016 Sci. China: Chem. 59 730

    [10]

    Lan X, Lu X, Shen C, Ke Y, Ni W, Wang Q 2015 J. Am. Chem. Soc. 137 457

    [11]

    Acuna G, Moller F, Holzmeister P, Beater S, Lalkens B, Tinnefeld P 2012 Science 338 506

    [12]

    Murphy C J, Thompson L B, Chernak D J, Yang J A, Sivapalan S T, Boulos S P, Huang J Y, Alkilany A M, Sisco P N 2011 Curr. Opin. Colloid Interf. Sci. 16 128

    [13]

    Feng L, Romulus J, Li M, Sha R, Royer J, Wu K T, Xu Q, Seeman N C, Weck M, Chaikin P 2013 Nat. Mater. 12 747

    [14]

    Hedrick J L, Brown K A, Kluender E J, Cabezas M D, Chen P C, Mirkin C A 2016 ACS Nano 10 3144

    [15]

    Kumar A, Hwang J H, Kumar S, Nam J M 2013 Chem. Commun. 49 2597

    [16]

    Tan S J, Campolongo M J, Luo D, Cheng W 2011 Nat. Nanotechnol. 6 268

    [17]

    Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller M, Hogele A, Simmel F, Govorov O, Liedl T 2012 Nature 483 311

    [18]

    Thacker V V, Herrmann L O, Sigle D O, Zhang T, Liedl T, Baumberg J J, Keyser U F 2014 Nat. Commun. 5 3448

    [19]

    Roller E M, Khorashad L K, Fedoruk M, Schreiber R, Govorov O, Liedl T 2015 Nano Lett. 15 1368

    [20]

    Kallenbach N R, Ma R I, Seeman N C 1983 Nature 305 829

    [21]

    Seeman N C 2003 Nature 421 427

    [22]

    Rothemund P W 2006 Nature 440 297

    [23]

    Nangreave J, Han D, Liu Y, Yan H 2010 Curr. Opin. Chem. Biol. 14 608

    [24]

    Chen J, Seeman N C 1991 Nature 350 631

    [25]

    Fu T, Seeman N C 1993 Biochemistry 32 3211

    [26]

    Mao C D, Sun W, Seeman N C 1997 Nature 386 137

    [27]

    Ma R I, Kallenbach N R, Sheardy R D, Petrillo M L, Seeman N C 1986 Nucl. Acids Res. 14 9745

    [28]

    Wang X, Seeman N C 2007 J. Am. Chem. Soc. 129 8169

    [29]

    LaBean T H, Yan H, Kopatsch J, Liu F R, Winfree E, Reif J H, Seeman N C 2000 J. Am. Chem. Soc. 122 1848

    [30]

    Yan H, Park S H, Finkelstein G, Reif J H, LaBean T H 2003 Science 301 1882

    [31]

    Yin P, Hariadi R F, Sahu S, Choi H M, Park S H, Labean T H, Reif J H 2008 Science 321 824

    [32]

    Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M 2009 Nature 459 414

    [33]

    Ke Y, Douglas S M, Liu M, Sharma J, Cheng A, Leung A, Liu Y, Shih W M, Yan H 2009 J. Am. Chem. Soc. 131 15903

    [34]

    Liedl T, Hogberg B, Tytell J, Ingber D E, Shih W M 2010 Nat. Nanotechnol. 5 520

    [35]

    Veneziano R, Ratanalert S, Zhang K, Zhang F, Yan H, Chiu W, Bathe M 2016 Science 352 1534

    [36]

    Benson E, Mohammed A, Gardell J, Masich S, Czeizler E, Orponen P, Hogberg B 2015 Nature 523 441

    [37]

    Wang Z, Zhang J, Ekman J M, Kenis P J, Lu Y 2010 Nano Lett. 10 1886

    [38]

    Tan L H, Yue Y, Satyavolu N S, Ali A S, Wang Z, Wu Y, Lu Y 2015 J. Am. Chem. Soc. 137 14456

    [39]

    Wu J, Tan L H, Hwang K, Xing H, Wu P, Li W, Lu Y 2014 J. Am. Chem. Soc. 136 15195

    [40]

    Satyavolu N S, Tan L H, Lu Y 2016 J. Am. Chem. Soc. 138 16542

    [41]

    Shen J, Xu L, Wang C, Pei H, Tai R, Song S, Huang Q, Fan C, Chen G 2014 Angew. Chem. Int. Ed. 53 8338

    [42]

    Lee J H, You M H, Kim G H, Nam J M 2014 Nano Lett. 14 6217

    [43]

    Shen J, Su J, Yan J, Zhao B, Wang D, Wang S, Li K, Liu M, He Y, Mathur S, Fan C, Song S 2014 Nano Res. 8 731

    [44]

    Xu L, Wang G, Shen J, Geng H, Li W, Wu L, Gao S, Wang J, Wang L, Fan C, Chen G 2016 Nanoscale 8 9337

    [45]

    Lim D K, Jeon K S, Hwang J H, Kim H, Kwon S, Suh Y D, Nam J M 2011 Nat. Nanotechnol. 6 452

    [46]

    Zhao B, Shen J, Chen S, Wang D, Li F, Mathur S, Song S, Fan C 2014 Chem. Sci. 5 4460

    [47]

    Hu C, Shen J, Yan J, Zhong J, Qin W, Liu R, Aldalbahi A, Zuo X, Song S, Fan C, He D 2016 Nanoscale 8 2090

    [48]

    Li J, Wei C, Ma W, An Q, Guo J, Hu J, Wang C 2012 J. Mater. Chem. 22 12100

    [49]

    Monson C F, Woolley A T 2003 Nano Lett. 3 359

    [50]

    Gu Q, Cheng C, Haynie D T 2005 Nanotechnology 16 1358

    [51]

    Liu D, Park S H, Reif J H, LaBean T H 2004 Proc. Natl. Acad. Sci. USA 101 717

    [52]

    Liu J, Geng Y, Pound E, Gyawali S, Ashton J R, Hickey J, Woolley A T, Harb J N 2011 ACS Nano 5 2240

    [53]

    Geng Y, Pearson A C, Gates E P, Uprety B, Davis R C, Harb J N, Woolley A T 2013 Langmuir 29 3482

    [54]

    Pilo-Pais M, Goldberg S, Samano E, Labean T H, Finkelstein G 2011 Nano Lett. 11 3489

    [55]

    Pal S, Varghese R, Deng Z, Zhao Z, Kumar A, Yan H, Liu Y 2011 Angew. Chem. Int. Ed. 50 4176

    [56]

    Xiao S J, Liu F R, Rosen A E, Hainfeld J F, Seeman N C, Musier-Forsyth K, Kiehl R A 2002 J. Nanopart. Res. 4 313

    [57]

    Zheng J, Constantinou P E, Micheel C, Alivisatos A P, Kiehl R A, Seeman N C 2006 Nano Lett. 6 1502

    [58]

    Sharma J, Chhabra R, Liu Y, Ke Y, Yan H 2006 Angew. Chem. Int. Ed. 45 730

    [59]

    Le J D, Pinto Y, Seeman N C, Musier-Forsyth K, Taton T A, Kiehl R A 2004 Nano Lett. 4 2343

    [60]

    Zhang J, Liu Y, Ke Y, Yan H 2006 Nano Lett. 6 248

    [61]

    Zhang C, Li X, Tian C, Yu G, Li Y, Jiang W, Mao C 2014 ACS Nano 8 1130

    [62]

    Li Y, Liu Z, Yu G, Jiang W, Mao C 2015 J. Am. Chem. Soc. 137 4320

    [63]

    Aldaye F A, Sleiman H F 2007 J. Am. Chem. Soc. 129 4130

    [64]

    Elbaz J, Cecconello A, Fan Z, Govorov A O, Willner I 2013 Nat. Commun. 4 2000

    [65]

    Ding B, Cabrini S, Zuckermann R, Bokor J 2009 J. Vac. Sci. Technol. B 27 184

    [66]

    Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H 2009 Science 323 112

    [67]

    Sharma J, Chhabra R, Andersen C S, Gothelf K V, Yan H, Liu Y 2008 J. Am. Chem. Soc. 130 7820

    [68]

    Ding B, Deng Z, Yan H, Cabrini S, Zuckermann R, Bokor J 2010 J. Am. Chem. Soc. 132 3248

    [69]

    Pal S, Deng Z, Ding B, Yan H, Liu Y 2010 Angew. Chem. Int. Ed. 49 2700

    [70]

    Pal S, Deng Z, Wang H, Zou S, Liu Y, Yan H 2011 J. Am. Chem. Soc. 133 17606

    [71]

    Schreiber R, Do J, Roller E M, Zhang T, Schuller V J, Nickels P C, Feldmann J, Liedl T 2014 Nat. Nanotechnol. 9 74

    [72]

    Puchkova A, Vietz C, Pibiri E, Wunsch B, Sanz M, Acuna P, Tinnefeld P 2015 Nano Lett. 15 8354

    [73]

    Ko S H, Du K, Liddle J A 2013 Angew. Chem. Int. Ed. 52 1193

    [74]

    Pellegrotti J V, Acuna G P, Puchkova A, Holzmeister P, Gietl A, Lalkens B, Stefani D, Tinnefeld P 2014 Nano Lett. 14 2831

    [75]

    Lan X, Chen Z, Dai G, Lu X, Ni W, Wang Q 2013 J. Am. Chem. Soc. 135 11441

    [76]

    Urban J, Dutta K, Wang P, Duan X, Shen X, Ding B, Ke Y, Liu N 2016 J. Am. Chem. Soc. 138 5495

    [77]

    Shen C, Lan X, Zhu C, Zhang W, Wang L, Wang Q 2017 Adv. Mater. 29 1606533

    [78]

    Zhang Y, Chao J, Liu H, Wang F, Su S, Liu B, Zhang L, Shi J, Wang L, Huang W, Wang L, Fan C 2016 Angew. Chem. Int. Ed. 55 8036

    [79]

    Kuzyk A, Schreiber R, Zhang H, Govorov O, Liedl T, Liu N 2014 Nat. Mater. 13 862

    [80]

    Zhou C, Duan X, Liu N 2015 Nat. Commun. 6 8102

    [81]

    Urban J, Zhou C, Duan X, Liu N 2015 Nano Lett. 15 8392

    [82]

    Kuhler P, Roller M, Schreiber R, Liedl T, Lohmuller T, Feldmann J 2014 Nano Lett. 14 2914

    [83]

    Simoncelli S, Roller E M, Urban P, Schreiber R, Turberfield A J, Liedl T, Lohmuller T 2016 ACS Nano 10 9809

    [84]

    Roller M, Argyropoulos C, Hogele A, Liedl T, Pilo-Pais M 2016 Nano Lett. 16 5962

    [85]

    Weller L, Thacker V, Herrmann O, Hemmig A, Lombardi A, Keyser F, Baumberg J 2016 ACS Photon. 3 1589

    [86]

    Zhan P, Dutta P K, Wang P, Song G, Dai M, Zhao S X, Wang Z G, Yin P, Zhang W, Ding B, Ke Y 2017 ACS Nano 11 1172

    [87]

    Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60

    [88]

    Yan W, Xu L, Xu C, Ma W, Kuang H, Wang L, Kotov N A 2012 J. Am. Chem. Soc. 134 15114

    [89]

    Li K, Wang K, Qin W, Deng S, Li D, Shi J, Huang Q, Fan C 2015 J. Am. Chem. Soc. 137 4292

    [90]

    Lee K, Cui Y, Lee L P, Irudayaraj J 2014 Nat. Nanotechnol. 9 474

    [91]

    Macfarlane R J, Lee B, Jones M R, Harris N, Schatz G C, Mirkin C A 2011 Science 334 204

    [92]

    Senesi A J, Eichelsdoerfer D J, Macfarlane R J, Jones M R, Auyeung E, Lee B, Mirkin C A 2013 Angew. Chem. Int. Ed. 52 6624

    [93]

    Jones M R, Macfarlane R J, Lee B, Zhang J, Young K L, Senesi A J, Mirkin C A 2010 Nat. Mater. 9 913

    [94]

    Auyeung E, Cutler J I, Macfarlane R J, Jones M R, Wu J S, Liu G, Zhang K, Osberg K D, Mirkin C A 2012 Nat. Nanotechnol. 7 24

    [95]

    Auyeung E, Li T I, Senesi A J, Schmucker A L, Pals B C, de la Cruz M O, Mirkin C A 2014 Nature 505 73

    [96]

    Kim Y, Macfarlane R J, Jones M R, Mirkin C A 2016 Science 351 579

    [97]

    Maye M M, Kumara M T, Nykypanchuk D, Sherman W B, Gang O 2010 Nat. Nanotechnol. 5 116

    [98]

    Zhang Y, Pal S, Srinivasan B, Vo T, Kumar S, Gang O 2015 Nat. Mater. 14 840

    [99]

    Liu W, Tagawa M, Xin H L, Wang T, Emamy H, Li H, Yager K G, Starr F W, Tkachenko A V, Gang O 2016 Science 351 582

    [100]

    Gopinath A, Miyazono E, Faraon A, Rothemund P W 2016 Nature 535 401

    [101]

    Hung A M, Micheel C M, Bozano L D, Osterbur L W, Wallraff G M, Cha J N 2010 Nat. Nanotechnol. 5 121

  • [1] Zhao Song, Zhou Hua, Wang Shu-Ying, Han Fei, Jiang Si-Han, Shen Xiang-Qian. Design of high efficiency perovskite/silicon tandem solar cells based on plasmonic enhancement of metal nanosphere. Acta Physica Sinica, 2022, 71(3): 038801. doi: 10.7498/aps.71.20211585
    [2] Design of high efficiency perovskite/silicon tandem solar cells based on the plasmonic enhancement of metal nanosphere. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211585
    [3] Huangfu Xia-Hong, Liu Shuang-Fei, Xiao Jia-Jun, Zhang Bei, Peng Xin-Cun. Modulating infrared optoelectronic performance of GaInAsSb p-n junction by nanophotonic structure. Acta Physica Sinica, 2021, 70(11): 118501. doi: 10.7498/aps.70.20201829
    [4] Zhang Li-Sheng. Photocatalytic properties of gold nanoarrays driven by surface plasmon. Acta Physica Sinica, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [5] Wang Xiang-Xian, Bai Xue-Lin, Pang Zhi-Yuan, Yang Hua, Qi Yun-Ping, Wen Xiao-Lei. Surface-enhanced Raman scattering effect of composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate film. Acta Physica Sinica, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [6] Xiong Zhi-Cheng, Zhu Li-Lin, Liu Cheng, Gao Shu-Mei, Zhu Jian-Qiang. High-intensity directional surface plasmonic excitation based on the multi metallic slits with nano-antenna. Acta Physica Sinica, 2015, 64(24): 247301. doi: 10.7498/aps.64.247301
    [7] Huang Hong, Zhao Qing, Jiao Jiao, Liang Gao-Feng, Huang Xiao-Ping. Study of plasmonic nanolaser based on the deep subwavelength scale. Acta Physica Sinica, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [8] Lin Yu, Yang Guang-Can, Wang Yan-Wei. A dynamic light scattering study of counter-ions condensation on DNA. Acta Physica Sinica, 2013, 62(11): 118702. doi: 10.7498/aps.62.118702
    [9] Zhang Zhi-Dong, Xiong Zu-Hong, Zhang Zhong-Yue, Wang Hong-Yan, Li Xue-Lian. Enhancing electric fields around nanospheresby parallel clapboards. Acta Physica Sinica, 2011, 60(4): 047807. doi: 10.7498/aps.60.047807
    [10] Cheng Mu-Tian. Coherent controlling surface plasmon transport properties in Ag nanowire by classic optical field. Acta Physica Sinica, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [11] Li Shan, Zhong Ming-Liang, Zhang Li-Jie, Xiong Zu-Hong, Zhang Zhong-Yue. Effects of incident polarization and electric field coupling on the surface plasmon properties of square hollow Ag nanostructures. Acta Physica Sinica, 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [12] Chen Hua, Wang Li. Terahertz surface plasmon polariton couping on brass rods. Acta Physica Sinica, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [13] Huang Qian, Wang Jing, Cao Li-Ran, Sun Jian, Zhang Xiao-Dan, Geng Wei-Dong, Xiong Shao-Zhen, Zhao Ying. Research of surface enhanced Raman scattering caused by surface plasmon of Ag nano-structures. Acta Physica Sinica, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [14] Zhou Ren-Long, Chen Xiao-Shuang, Zeng Yong, Zhang Jian-Biao, Chen Hong-Bo, Wang Shao-Wei, Lu Wei, Li Hong-Jian, Xia Hui, Wang Ling-Ling. Enhanced transmission through metal-film hole arrays and the surface plasmon resonance. Acta Physica Sinica, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [15] Gao Jian-Xia, Song Guo-Feng, Guo Bao-Shan, Gan Qiao-Qiang, Chen Liang-Hui. Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser. Acta Physica Sinica, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
    [16] Gao Xu-Tuan, Fu Xue, Song Jun, Liu De-Sheng, Xie Shi-Jie. Effect of lattice site position fluctuation on the electronic structure of DNA. Acta Physica Sinica, 2006, 55(2): 952-956. doi: 10.7498/aps.55.952
    [17] Liu Yu-Ying, Dou Shuo-Xing, Wang Peng-Ye, Xie Ping, Wang Wei-Chi. Study of interactions between DNA and histone with molecular combing method. Acta Physica Sinica, 2005, 54(2): 622-627. doi: 10.7498/aps.54.622
    [18] Song Jun, Chen Lei, Liu De-Sheng, Xie Shi-Jie. Study on the energy levels and electronic states of DNA molecules. Acta Physica Sinica, 2004, 53(8): 2792-2795. doi: 10.7498/aps.53.2792
    [19] Dong Rui-Xin, Yan Xun-Ling, Pang Xiao-Feng, Liu Sheng-Gang. The nonlinear characteristics study of the effect of salt on denaturation transi tion of DNA. Acta Physica Sinica, 2003, 52(12): 3197-3202. doi: 10.7498/aps.52.3197
    [20] Wu Shi-Ying, Zhang Yi, Lei Xiao-Ling, Hu Jun, Ai Xiao-Bai, Li Min-Qian. . Acta Physica Sinica, 2002, 51(8): 1887-1891. doi: 10.7498/aps.51.1887
Metrics
  • Abstract views:  5865
  • PDF Downloads:  345
  • Cited By: 0
Publishing process
  • Received Date:  23 January 2017
  • Accepted Date:  19 April 2017
  • Published Online:  05 July 2017

/

返回文章
返回