Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nanoscale surface topography imaging using phase-resolved spectral domain optical coherence tomography

Wang Yi Guo Zhe Zhu Li-Da Zhou Hong-Xian Ma Zhen-He

Citation:

Nanoscale surface topography imaging using phase-resolved spectral domain optical coherence tomography

Wang Yi, Guo Zhe, Zhu Li-Da, Zhou Hong-Xian, Ma Zhen-He
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Microscopic surface topography plays an important role in studying the functions and properties of materials. Microscopic surface topography measurement has been widely used in many areas, such as machine manufacturing, electronic industry and biotechnology. Optical interferometry is a popular technique for surface topography measurement with an axial resolution up to nanoscale. However, the application of this technique is hampered by phase wrapping, which results in a limited measurement range for this technique. Various digital algorithms for phase unwrapping have been proposed based on the phase continuity between two adjacent points. However, several significant challenges still exist in recovering correct phase with this technique. Optical coherence tomography (OCT) is a non-contact three-dimensional imaging modality with high spatial resolution, and it has been widely used for imaging the biological tissues. In this paper, we demonstrate a method for nanoscale imaging of surface topography by using common-path phase-resolved spectral domain OCT to reduce the influence of phase wrapping. The system includes a superluminescent diode with a central wavelength of 1310 nm and a spectral bandwidth of 62 nm, an optical fiber circulator, a home-made spectrometer, and a reference arm and a sample arm in common-path arrangement. The reference mirror and the sample under investigation are positioned on a same stage in order to further reduce the influence of ambient vibration. The phase difference between two adjacent points is calculated by performing Fourier transform on the measured interferometric spectrum. The phase difference distribution of the surface is obtained first. And then, the surface topography of the sample is constructed by integrating the phase difference distribution. In the traditional methods, phase wrapping occurs if the absolute value of the measured phase is greater than . However, in the present method, phase wrapping occurs if the absolute value of the phase difference between two adjacent points is greater than . The maximal detectable absolute value of the phase difference between two adjacent points increases from for the traditional methods to 2 for the present method. The experimental results indicate that the present system has a high stability and the maximum fluctuation is less than 0.3 nm without averaging. The accuracy of the system is tested with a piezo stage, and the mean absolute deviation of the measured results is 0.62 nm. The performance of the present system is also demonstrated by the surface topography imaging of an optical resolution test target and a roughness comparison specimen. The experimental result shows that the present system is a potential powerful tool for surface topography imaging with an axial resolution better than 1 nm.
      Corresponding author: Wang Yi, wangyi@neuq.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.61275214,31170956) and the Hebei Provincial Natural Science Foundation of China (Grant Nos.A2015501065,H2015501133).
    [1]

    Thomas T R 2013 Sur. Topogr. Metrol. Prop. 2 014001

    [2]

    Heintze S D, Forjanic M, Rousson V 2006 Dent. Mater. 22 146

    [3]

    Song R L, Liu P, Zhang K, Liu X K, Chen X H 2016 Chin. J. Mater. Res. 30 255 (in Chinese) [宋瑞利, 刘平, 张柯, 刘新宽, 陈小红 2016 材料研究学报 30 255]

    [4]

    Leyva-Mendivil M F, Lengiewicz J, Page A, Bressloff N W, Limbert G 2017 Tribol. Lett. 65 12

    [5]

    Wang J D, Chen D R, Kong X M 2003 Tribology 23 52 (in Chinese) [汪家道, 陈大融, 孔宪梅 2003 摩擦学学报 23 52]

    [6]

    Groot P D 2015 Adv. Opt. Photon. 7 1

    [7]

    Bruzzone A A G, Costa H L, Lonardo P M, Lucca D A 2008 CIRP Annals-Manufact. Technol. 57 750

    [8]

    Leach R K, Giusca C L, Naoi K 2009 Measur. Sci. Technol. 20 125102

    [9]

    Wang D, He C, Stoykovich M P, Schwartz D K 2015 ACS Nano 9 1656

    [10]

    Guenther K H, Wierer P G, Bennett J M 1984 Appl. Opt. 23 3820

    [11]

    Labella V P, Ding Z, Bullock D W, Emery C, Thibado P M 2000 J. Vacuum Sci. Technol. A 18 1492

    [12]

    Schouteden K, Lauwaet K, Janssens E, Barcaro G, Fortunelli A, van Haesendonck C 2014 Nanoscale 6 2170

    [13]

    Ando T, Uchihashi T, Scheuring S 2014 Chem. Rev. 114 3120

    [14]

    Butt H J, Cappella B, Kappl M 2005 Surf. Sci. Rep. 59 1

    [15]

    Duque D, Garzn J 2013 Opt. Laser Technol. 50 182

    [16]

    Shi K, Li P, Yin S, Liu Z 2004 Opt. Express 12 2096

    [17]

    Cai H, Guangyao L I, Huang Z 2016 Laser Technol. 40 20 (in Chinese) [蔡怀宇, 李光耀, 黄战华 2016 激光技术 40 20]

    [18]

    Lehmann P, Khnhold P, Xie W 2014 Measur. Sci. Technol. 25 065203

    [19]

    Liu C, Chen L, Wang J, Han Z G, Shi L L 2011 Opto-electronic Eng. 38 71

    [20]

    Lin H, Li Y, Wang D, Tong X, Liu M 2009 Appl. Opt. 48 1502

    [21]

    Zhou Z F, Zhang T, Zhou W D, Li W J 2001 Opto-electronic Eng. 28 7 (in Chinese) [周肇飞, 张涛, 周卫东, 李文杰 2001 光电工程 28 7]

    [22]

    Liu S, Yang L X 2007 Opt. Eng. 46 051012

    [23]

    Goldstein G, Creath K 2015 Appl. Opt. 54 5175

    [24]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W 1991 Science 254 1178

    [25]

    Wang R K, An L 2009 Opt. Express 17 8926

    [26]

    Ortiz S, Siedlecki D, Remon L, Marcos S 2009 Appl. Opt. 48 6708

    [27]

    Ortiz S, Siedlecki D, Prezmerino P, Chia N, Castro A D, Szkulmowski M 2011 Biomed. Opt. Express 2 3232

    [28]

    Sun M, Birkenfeld J, Castro A D, Ortiz S, Marcos S 2014 Biomed. Opt. Express 5 3547

    [29]

    Xue P, Fujimoto J G 2008 Sci. Bull. 53 1963

    [30]

    Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler W, Apolonski A, Wadsworth W J, Knight J C, Russell P S, Vetterlein M, Scherzer E 2002 Opt. Lett. 27 1800

    [31]

    Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174201 (in Chinese) [唐弢, 赵晨, 陈志彦, 李鹏, 丁志华 2015 物理学报 64 174201]

    [32]

    Ma Z, He Z, Wang S, Wang Y, Li M, Wang Q, Wang F 2012 Opt. Eng. 51 063203

    [33]

    Tomlins P H, Wang R K 2005 J. Phys. D: Appl. Phys. 38 2519

  • [1]

    Thomas T R 2013 Sur. Topogr. Metrol. Prop. 2 014001

    [2]

    Heintze S D, Forjanic M, Rousson V 2006 Dent. Mater. 22 146

    [3]

    Song R L, Liu P, Zhang K, Liu X K, Chen X H 2016 Chin. J. Mater. Res. 30 255 (in Chinese) [宋瑞利, 刘平, 张柯, 刘新宽, 陈小红 2016 材料研究学报 30 255]

    [4]

    Leyva-Mendivil M F, Lengiewicz J, Page A, Bressloff N W, Limbert G 2017 Tribol. Lett. 65 12

    [5]

    Wang J D, Chen D R, Kong X M 2003 Tribology 23 52 (in Chinese) [汪家道, 陈大融, 孔宪梅 2003 摩擦学学报 23 52]

    [6]

    Groot P D 2015 Adv. Opt. Photon. 7 1

    [7]

    Bruzzone A A G, Costa H L, Lonardo P M, Lucca D A 2008 CIRP Annals-Manufact. Technol. 57 750

    [8]

    Leach R K, Giusca C L, Naoi K 2009 Measur. Sci. Technol. 20 125102

    [9]

    Wang D, He C, Stoykovich M P, Schwartz D K 2015 ACS Nano 9 1656

    [10]

    Guenther K H, Wierer P G, Bennett J M 1984 Appl. Opt. 23 3820

    [11]

    Labella V P, Ding Z, Bullock D W, Emery C, Thibado P M 2000 J. Vacuum Sci. Technol. A 18 1492

    [12]

    Schouteden K, Lauwaet K, Janssens E, Barcaro G, Fortunelli A, van Haesendonck C 2014 Nanoscale 6 2170

    [13]

    Ando T, Uchihashi T, Scheuring S 2014 Chem. Rev. 114 3120

    [14]

    Butt H J, Cappella B, Kappl M 2005 Surf. Sci. Rep. 59 1

    [15]

    Duque D, Garzn J 2013 Opt. Laser Technol. 50 182

    [16]

    Shi K, Li P, Yin S, Liu Z 2004 Opt. Express 12 2096

    [17]

    Cai H, Guangyao L I, Huang Z 2016 Laser Technol. 40 20 (in Chinese) [蔡怀宇, 李光耀, 黄战华 2016 激光技术 40 20]

    [18]

    Lehmann P, Khnhold P, Xie W 2014 Measur. Sci. Technol. 25 065203

    [19]

    Liu C, Chen L, Wang J, Han Z G, Shi L L 2011 Opto-electronic Eng. 38 71

    [20]

    Lin H, Li Y, Wang D, Tong X, Liu M 2009 Appl. Opt. 48 1502

    [21]

    Zhou Z F, Zhang T, Zhou W D, Li W J 2001 Opto-electronic Eng. 28 7 (in Chinese) [周肇飞, 张涛, 周卫东, 李文杰 2001 光电工程 28 7]

    [22]

    Liu S, Yang L X 2007 Opt. Eng. 46 051012

    [23]

    Goldstein G, Creath K 2015 Appl. Opt. 54 5175

    [24]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W 1991 Science 254 1178

    [25]

    Wang R K, An L 2009 Opt. Express 17 8926

    [26]

    Ortiz S, Siedlecki D, Remon L, Marcos S 2009 Appl. Opt. 48 6708

    [27]

    Ortiz S, Siedlecki D, Prezmerino P, Chia N, Castro A D, Szkulmowski M 2011 Biomed. Opt. Express 2 3232

    [28]

    Sun M, Birkenfeld J, Castro A D, Ortiz S, Marcos S 2014 Biomed. Opt. Express 5 3547

    [29]

    Xue P, Fujimoto J G 2008 Sci. Bull. 53 1963

    [30]

    Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler W, Apolonski A, Wadsworth W J, Knight J C, Russell P S, Vetterlein M, Scherzer E 2002 Opt. Lett. 27 1800

    [31]

    Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174201 (in Chinese) [唐弢, 赵晨, 陈志彦, 李鹏, 丁志华 2015 物理学报 64 174201]

    [32]

    Ma Z, He Z, Wang S, Wang Y, Li M, Wang Q, Wang F 2012 Opt. Eng. 51 063203

    [33]

    Tomlins P H, Wang R K 2005 J. Phys. D: Appl. Phys. 38 2519

  • [1] Hao Guang-Hui, Li Ze-Peng, Gao Yu-Juan, Zhou Ya-Kun. Effect of surface topography on emission properties of hot-cathode. Acta Physica Sinica, 2019, 68(3): 037901. doi: 10.7498/aps.68.20181725
    [2] Tao Hai-Yan, Chen Rui, Song Xiao-Wei, Chen Ya-Nan, Lin Jing-Quan. Femtosecond laser pulse energy accumulation optimization effect on surface morphology of black silicon. Acta Physica Sinica, 2017, 66(6): 067902. doi: 10.7498/aps.66.067902
    [3] Pan Xiao, Ju Huan-Xin, Feng Xue-Fei, Fan Qi-Tang, Wang Chia-Hsin, Yang Yaw-Wen, Zhu Jun-Fa. Surface morphology of F8BT films and interface structures and reactions of Al on F8BT films. Acta Physica Sinica, 2015, 64(7): 077304. doi: 10.7498/aps.64.077304
    [4] Zhou Xun, Luo Zi-Jiang, Wang Ji-Hong, Guo Xiang, Ding Zhao. Effect of low As pressure annealing on the morphology and reconstruction of GaAs (001). Acta Physica Sinica, 2015, 64(21): 216803. doi: 10.7498/aps.64.216803
    [5] Yu Xiao, Shen Jie, Zhong Hao-Wen, Zhang Jie, Zhang Gao-Long, Zhang Xiao-Fu, Yan Sha, Le Xiao-Yun. Simulation on surface morphology evolution of metal targets irradiated by intense pulsed electron beam. Acta Physica Sinica, 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [6] Jing Wei-Xuan, Wang Bing, Niu Ling-Ling, Qi Han, Jiang Zhuang-De, Chen Lu-Jia, Zhou Fan. Relationships between synthesizing parameters, morphology, and contact angles of ZnO nanowire films. Acta Physica Sinica, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [7] Yu Tian-Yan, Qin Yang, Liu Ding-Quan. Investigation of the crystal and optical properties of ZnS thin films deposited at different temperature. Acta Physica Sinica, 2013, 62(21): 214211. doi: 10.7498/aps.62.214211
    [8] Peng Shu-Ming, Shen Hua-Hai, Long Xing-Gui, Zhou Xiao-Song, Yang Li, Zu Xiao-Tao. The influence of deuteration and helium-implantation on the surface morphology and phase structure of scandium thick film. Acta Physica Sinica, 2012, 61(17): 176106. doi: 10.7498/aps.61.176106
    [9] Cao Yue-Hua, Di Guo-Qing. Analysis of Y2O3 doped TiO2 films topography prepared by radio frequency magnetron sputtering. Acta Physica Sinica, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [10] Su Fa-Gang, Liang Jing-Qiu, Liang Zhong-Zhu, Zhu Wan-Bin. Study on the surface morphology and absorptivity of light-absorbing materials. Acta Physica Sinica, 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [11] Di Guo-Qing. Surface morphology and optical properties of Ta2O5 films prepared by radio frequency sputtering. Acta Physica Sinica, 2011, 60(3): 038101. doi: 10.7498/aps.60.038101
    [12] Yu Tian-Yan, Qin Yang, Liu Ding-Quan, Zhang Feng-Shan. Physical and infrared optical properties of mixed SrF2-CaF2 thin films. Acta Physica Sinica, 2010, 59(4): 2546-2550. doi: 10.7498/aps.59.2546
    [13] Wang Kai, Zeng Yan, Ding Zhi-Hua, Meng Jie, Shi Guo-Hua, Zhang Yu-Dong. Imaging quality enhancement by deconvolution in spectral domain optical coherence tomography. Acta Physica Sinica, 2010, 59(4): 2471-2478. doi: 10.7498/aps.59.2471
    [14] Jiang Yang, Luo Yi, Xi Guang-Yi, Wang Lai, Li Hong-Tao, Zhao Wei, Han Yan-Jun. Effect of AlGaN intermediate layer on residual stress control and surface morphology of GaN grown on 6H-SiC substrate by metal organic vapour phase epitaxy. Acta Physica Sinica, 2009, 58(10): 7282-7287. doi: 10.7498/aps.58.7282
    [15] Zhang Li-Qing, Zhang Chong-Hong, Yang Yi-Tao, Yao Cun-Feng, Sun You-Mei, Li Bing-Sheng, Zhao Zhi-Ming, Song Shu-Jian. Surface morphology of GaN bombarded by highly charged 126Xeq+ ions. Acta Physica Sinica, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [16] Yang Ji-Jun, Xu Ke-Wei. Surface dynamic evolution of Ta film growth in the initial stage. Acta Physica Sinica, 2007, 56(10): 6023-6027. doi: 10.7498/aps.56.6023
    [17] Gu Jian-Feng, Fu Wei-Jia, Liu Ming, Liu Zhi-Wen, Ma Chun-Yu, Zhang Qing-Yu. Highly c-axis textured ZnO thin films grown by electrochemical deposition and their optical properties. Acta Physica Sinica, 2007, 56(10): 5979-5985. doi: 10.7498/aps.56.5979
    [18] Sun Cheng-Wei, Liu Zhi-Wen, Qin Fu-Wen, Zhang Qing-Yu, Liu Kun, Wu Shi-Fa. Influences of growth temperature on the crystalline characteristics and optical properties for ZnO films deposited by reactive magnetron sputtering. Acta Physica Sinica, 2006, 55(3): 1390-1397. doi: 10.7498/aps.55.1390
    [19] Wang Yuan, Bai Xuan-Yu, Xu Ke-Wei. Morphological characterization and nanoindentation hardness scatter evaluation for Cu-W thin films based on wavelet transform. Acta Physica Sinica, 2004, 53(7): 2281-2286. doi: 10.7498/aps.53.2281
    [20] LIAO MEI-YONG, QIN FU-GUANG, CHAI CHUN-LIN, LIU ZHI-KAI, YANG SHAO-YAN, YAO ZHEN-YU, WANG ZHAN-GUO. INFLUENCE OF ION ENERGY AND DEPOSITION TEMPERATURE ON THE SURFACE MORPHOLOGY OF CARBON FILMS DEPOSITED BY ION BEAMS. Acta Physica Sinica, 2001, 50(7): 1324-1328. doi: 10.7498/aps.50.1324
Metrics
  • Abstract views:  4871
  • PDF Downloads:  167
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2017
  • Accepted Date:  23 April 2017
  • Published Online:  05 August 2017

/

返回文章
返回