Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vibro-acoustic stimulating ultrasonic guided waves in long bone

Liu Zhen-Li Song Liang-Hua Bai Liang Xu Kai-Liang Ta De-An

Citation:

Vibro-acoustic stimulating ultrasonic guided waves in long bone

Liu Zhen-Li, Song Liang-Hua, Bai Liang, Xu Kai-Liang, Ta De-An
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ultrasonic guided wave is sensitive to waveguide microstructure and material property, which has great potential applications in long cortical bone evaluation. Due to the multimodal dispersion effect, low-frequency guided wave is usually used to avoid multimode overlapping and simplify the signal processing. However, the traditional low-frequency ultrasound transducer is usually designed on a large-scale (around several millimeters), leading to relatively low-spatial resolution. In response to such a technique limit, an ultrasound-stimulated vibro-acoustic method is introduced to excite low-frequency ultrasonic guided waves. There are two excitation ways of the ultrasound-stimulated vibro-acoustic method, i.e., a single amplitude-modulated (AM) beam and confocal beam excitation. In the case of the single beam excitation, a high-frequency signal is modulated by using a low-frequency amplitude. In addition, low-frequency vibration can also be produced by a confocal transducer, where two beams are close to the center frequency and focus on a small region. In this way, the frequency difference between two beams can be selected to generate the arbitrary low-frequency excitation in a given bandwidth on the focus point. In this paper, we first introduce the theory of ultrasonic guided wave in the plate and the basic principle of ultrasound-stimulated acoustic emission. Second, the three-dimensional finite element method is used to simulate the phenomena of the low-frequency ultrasonic guided waves excited by the ultrasound-stimulated vibro-acoustic method. Two Gaussian-function enveloped tone-burst signals close to the center frequencies of 5 MHz are used to excite 150 kHz low-frequency guided wave in a 3 mm-thick bone plate. An ex-vivo bovine bone plate is involved in the experiments to test the feasibility of the proposed method. The axial transmission ultrasonic guided waves are recorded at eight different propagation distances. The time-frequency representation method is used to analyze the dispersive guided waves. The results indicate that both the two confocal beams and the single AM beam are capable of stimulating low-frequency ultrasonic guided waves in the bone plate. The first two fundamental guided wave modes, i.e., symmetrical S0 and asymmetrical A0 are observed in the bone plate. Similar spectrum can be obtained in the two different excitation ways. In the simulation and experiment, two wave packets can be separated in the distance-time diagram of the received signals. Good agreement can be found between the results of time-frequency representation and the theoretical group dispersion curves. This study can enhance the spatial resolution of measuring ultrasonic guided wave in long bone, and improve the flexibility of excitation with arbitrary frequency in a given bandwidth. The study can be helpful for developing the new clinical techniques of using low-frequency guided waves for long cortical bone assessment.
      Corresponding author: Xu Kai-Liang, xukl.fdu@gmail.com;tda@fudan.edu.cn ; Ta De-An, xukl.fdu@gmail.com;tda@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11327405,11525416,11304043).
    [1]

    Li Y, Liu D, Xu K L, Ta D A, Lawrence H, Wang W 2017 Biomed Res. Int.2017 3083141

    [2]

    Kang I L, Yoon S W 2016 Appl. Acoust. 112 10

    [3]

    Ta D A, Wang W Q, Wang Y Y 2009 Appl. Acoust. 28 161 (in Chinese) [他得安, 王威琪, 汪源源 2009 应用声学 28 161]

    [4]

    Moilanen P 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 1277

    [5]

    Ta D A, Huang K, Wang W Q, Wang Y Y, Le L H 2006 Ultrasonics 44 e279

    [6]

    Liu Y, Guo X S, Zhang D, Gong X F 2011 Acta Acust. 36 179 (in Chinese) [刘洋, 郭霞生, 章东, 龚秀芬 2011 声学学报 36179]

    [7]

    Ta D A, Wang W Q, Wang Y Y, Le L H, Zhou Y 2009 Ultrasound Med. Biol. 35 641

    [8]

    Zhang Z G, Ta D A 2012 Acta Phys. Sin. 61 134304 (in Chinese) [张正罡, 他得安 2012 物理学报 61 134304]

    [9]

    Bochud N, Vallet Q, Bala Y, Follet H, Minonzio J G, Laugier P 2016 Phys. Med. Biol. 61 6953

    [10]

    Siffert R S, Kaufman J J 2007 Bone 40 5

    [11]

    Xu K L, Tan Z, Ta D A, Wang W Q 2014 Acta Acust. 39 99 (in Chinese) [许凯亮, 谈钊, 他得安, 王威琪 2014 声学学报 39 99]

    [12]

    Wilcox P, Lowe M, Cawley P 2001 NDT E Int. 34 1

    [13]

    Xu K L, Ta D A, Moilanen P, Wang W Q 2012 J. Acoust. Soc. Am. 131 2714

    [14]

    Zhang R 2000 Acta Phys. Sin. 49 1297 (in Chinese) [张锐 2000 物理学报 49 1297]

    [15]

    Xu K L, Minonzio J G, Ta D A, Hu B, Wang W Q, Laugier P 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 1514

    [16]

    Song X, Ta D A, Wang W Q 2011 Ultrasound Med. Biol. 37 1704

    [17]

    Xu K L, Ta D A, Wang W Q 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 2480

    [18]

    Xu K L, Ta D A, Cassereau D, Hu B, Wang W Q, Laugier P, Minonzio J G 2016 J. Acoust. Soc. Am. 140 1758

    [19]

    Zeng L, Lin J, Huang L 2017 Sensors 17 955

    [20]

    Zeng L, Lin J, Bao J, Joseph R P, Huang L 2017 J. Sound Vib. 394 130

    [21]

    Xu K L, Ta D A, Hu B, Laugier P, Wang W Q 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 997

    [22]

    Lin J, Hua J, Zeng L, Luo Z 2015 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 165

    [23]

    Bai L, Xu K L, Bochud N, Ta D A, Hu B, Laugier P, Minonzio J G 2016 International Ultrasonics SymposiumTours, France, September 18-21, 2016 p1

    [24]

    Karppinen P, Salmi A, Moilanen P, Karppinen T 2013 J. Appl. Phys. 113 144904

    [25]

    Fatemi M, Greenleaf J F 1998 Science 280 82

    [26]

    Zhao G M, Lu M Z, Wan M X, Fang L 2009 Acta Phys. Sin. 58 6596 (in Chinese) [赵贵敏, 陆明珠, 万明习, 方莉 2009 物理学报 58 6596]

    [27]

    Chen S, Fatemi M, Kinnick R, Greenleaf J F 2004 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 313

    [28]

    He P Z, Cheng H P, Shou W D 2011 Tech. Acoust. 30 78 (in Chinese) [何培忠, 程海凭, 寿文德 2011 声学技术 30 78]

    [29]

    Mitri F G, Kinnick R R 2012 IEEE Trans. Biomed. Eng. 59 248

    [30]

    Alizad A, Mehrmohammadi M, Ghosh K, Glazebrook K N, Carter R E, Karaberkmez L G, Whaley D H, Fatemi M 2014 BMC Med. Imaging 14 40

    [31]

    Suarez M W, Dever D D, Gu X, Illian P R, McClintic A M, Mehic E, Mourad P D 2015 Ultrasonics 61 151

    [32]

    Ding Q N, Tao C, Liu X J 2017 Opt. Express 25 6164

    [33]

    Rose J L (translated by Wang X Y, He C F, Wu B) 1999 Ultrasonic Waves in Solid Media (Beijing: Science Press) pp82-92 (in Chinese) [罗斯J L 著(王秀彦, 何存富, 吴斌 译)1999 固体中的超声波(北京: 科学出版社)第8292页

    [34]

    Laugier P, Haat G 2011 Bone Quantitative Ultrasound (Berlin: Springer Netherlands) pp5, 6

    [35]

    Fatemi M, Wold L E, Alizad A, Greenleaf J F 2002 IEEE Trans. Med. Imaging 21 1

    [36]

    He P Z, Xia R M, Duan S M, Shou W D 2005 Tech. Acoust. 24 34 (in Chinese) [何培忠, 夏荣民, 段世梅, 寿文德 2005 声学技术 24 34]

    [37]

    Ta D A, Wang W Q 2004 China Medical Equipment 1 4 (in Chinese) [他得安, 王威琪 2004 中国医学装备 1 4]

    [38]

    Du P A, Yu Y T, Liu J T 2011 Finite Element Method: Theory, Modeling and Application (Beijing: National Defense Industry Press) pp1-12 (in Chinese) [杜平安, 于亚婷, 刘建涛 2011 有限元法: 原理、建模及应用(北京: 国防工业出版社)第112页]

    [39]

    Gsell D, Leutenegger T, Dual J 2004 J. Acoust. Soc. Am. 116 3284

    [40]

    Jiang S S, Liu Y, Xing E J 2015 Acta Phys. Sin. 64 064212 (in Chinese) [姜珊珊, 刘艳, 邢尔军 2015 物理学报 64 064212]

  • [1]

    Li Y, Liu D, Xu K L, Ta D A, Lawrence H, Wang W 2017 Biomed Res. Int.2017 3083141

    [2]

    Kang I L, Yoon S W 2016 Appl. Acoust. 112 10

    [3]

    Ta D A, Wang W Q, Wang Y Y 2009 Appl. Acoust. 28 161 (in Chinese) [他得安, 王威琪, 汪源源 2009 应用声学 28 161]

    [4]

    Moilanen P 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 1277

    [5]

    Ta D A, Huang K, Wang W Q, Wang Y Y, Le L H 2006 Ultrasonics 44 e279

    [6]

    Liu Y, Guo X S, Zhang D, Gong X F 2011 Acta Acust. 36 179 (in Chinese) [刘洋, 郭霞生, 章东, 龚秀芬 2011 声学学报 36179]

    [7]

    Ta D A, Wang W Q, Wang Y Y, Le L H, Zhou Y 2009 Ultrasound Med. Biol. 35 641

    [8]

    Zhang Z G, Ta D A 2012 Acta Phys. Sin. 61 134304 (in Chinese) [张正罡, 他得安 2012 物理学报 61 134304]

    [9]

    Bochud N, Vallet Q, Bala Y, Follet H, Minonzio J G, Laugier P 2016 Phys. Med. Biol. 61 6953

    [10]

    Siffert R S, Kaufman J J 2007 Bone 40 5

    [11]

    Xu K L, Tan Z, Ta D A, Wang W Q 2014 Acta Acust. 39 99 (in Chinese) [许凯亮, 谈钊, 他得安, 王威琪 2014 声学学报 39 99]

    [12]

    Wilcox P, Lowe M, Cawley P 2001 NDT E Int. 34 1

    [13]

    Xu K L, Ta D A, Moilanen P, Wang W Q 2012 J. Acoust. Soc. Am. 131 2714

    [14]

    Zhang R 2000 Acta Phys. Sin. 49 1297 (in Chinese) [张锐 2000 物理学报 49 1297]

    [15]

    Xu K L, Minonzio J G, Ta D A, Hu B, Wang W Q, Laugier P 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 1514

    [16]

    Song X, Ta D A, Wang W Q 2011 Ultrasound Med. Biol. 37 1704

    [17]

    Xu K L, Ta D A, Wang W Q 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 2480

    [18]

    Xu K L, Ta D A, Cassereau D, Hu B, Wang W Q, Laugier P, Minonzio J G 2016 J. Acoust. Soc. Am. 140 1758

    [19]

    Zeng L, Lin J, Huang L 2017 Sensors 17 955

    [20]

    Zeng L, Lin J, Bao J, Joseph R P, Huang L 2017 J. Sound Vib. 394 130

    [21]

    Xu K L, Ta D A, Hu B, Laugier P, Wang W Q 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 997

    [22]

    Lin J, Hua J, Zeng L, Luo Z 2015 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 165

    [23]

    Bai L, Xu K L, Bochud N, Ta D A, Hu B, Laugier P, Minonzio J G 2016 International Ultrasonics SymposiumTours, France, September 18-21, 2016 p1

    [24]

    Karppinen P, Salmi A, Moilanen P, Karppinen T 2013 J. Appl. Phys. 113 144904

    [25]

    Fatemi M, Greenleaf J F 1998 Science 280 82

    [26]

    Zhao G M, Lu M Z, Wan M X, Fang L 2009 Acta Phys. Sin. 58 6596 (in Chinese) [赵贵敏, 陆明珠, 万明习, 方莉 2009 物理学报 58 6596]

    [27]

    Chen S, Fatemi M, Kinnick R, Greenleaf J F 2004 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 313

    [28]

    He P Z, Cheng H P, Shou W D 2011 Tech. Acoust. 30 78 (in Chinese) [何培忠, 程海凭, 寿文德 2011 声学技术 30 78]

    [29]

    Mitri F G, Kinnick R R 2012 IEEE Trans. Biomed. Eng. 59 248

    [30]

    Alizad A, Mehrmohammadi M, Ghosh K, Glazebrook K N, Carter R E, Karaberkmez L G, Whaley D H, Fatemi M 2014 BMC Med. Imaging 14 40

    [31]

    Suarez M W, Dever D D, Gu X, Illian P R, McClintic A M, Mehic E, Mourad P D 2015 Ultrasonics 61 151

    [32]

    Ding Q N, Tao C, Liu X J 2017 Opt. Express 25 6164

    [33]

    Rose J L (translated by Wang X Y, He C F, Wu B) 1999 Ultrasonic Waves in Solid Media (Beijing: Science Press) pp82-92 (in Chinese) [罗斯J L 著(王秀彦, 何存富, 吴斌 译)1999 固体中的超声波(北京: 科学出版社)第8292页

    [34]

    Laugier P, Haat G 2011 Bone Quantitative Ultrasound (Berlin: Springer Netherlands) pp5, 6

    [35]

    Fatemi M, Wold L E, Alizad A, Greenleaf J F 2002 IEEE Trans. Med. Imaging 21 1

    [36]

    He P Z, Xia R M, Duan S M, Shou W D 2005 Tech. Acoust. 24 34 (in Chinese) [何培忠, 夏荣民, 段世梅, 寿文德 2005 声学技术 24 34]

    [37]

    Ta D A, Wang W Q 2004 China Medical Equipment 1 4 (in Chinese) [他得安, 王威琪 2004 中国医学装备 1 4]

    [38]

    Du P A, Yu Y T, Liu J T 2011 Finite Element Method: Theory, Modeling and Application (Beijing: National Defense Industry Press) pp1-12 (in Chinese) [杜平安, 于亚婷, 刘建涛 2011 有限元法: 原理、建模及应用(北京: 国防工业出版社)第112页]

    [39]

    Gsell D, Leutenegger T, Dual J 2004 J. Acoust. Soc. Am. 116 3284

    [40]

    Jiang S S, Liu Y, Xing E J 2015 Acta Phys. Sin. 64 064212 (in Chinese) [姜珊珊, 刘艳, 邢尔军 2015 物理学报 64 064212]

  • [1] Zhang Yun-Yun, Li Yi-Fang, Shi Qin-Zhen, Xu Le-Xiu, Dai Fei, Xing Wen-Yu, Ta De-An. Phase shift migration based plane-wave imaging of cortical bone. Acta Physica Sinica, 2023, 72(15): 154303. doi: 10.7498/aps.72.20230581
    [2] Xu Long, Wang Yao. Simulation of dynamic process of double bubble coupled acoustic cavitation. Acta Physica Sinica, 2023, 72(2): 024303. doi: 10.7498/aps.72.20221571
    [3] Zeng Sheng-Yang, Jia Lu, Zhang Shu-Zeng, Li Xiong-Bing, Wang Meng. Second-order perturbation solution and analysis of nonlinear surface waves. Acta Physica Sinica, 2022, 71(16): 164301. doi: 10.7498/aps.71.20212445
    [4] Shi Hui-Min, Hu Jing, Wang Cheng-Hui, Feng Fei-Long, Mo Run-Yang. Vibrational behavior of coated microbubble in finite tube under magneto-acoustic composite field. Acta Physica Sinica, 2021, 70(21): 214303. doi: 10.7498/aps.70.20210559
    [5] Wang Cun-Hai, Zheng Shu, Zhang Xin-Xin. Discontinuous finite element solutions for coupled radiation-conduction heat transfer in irregular media. Acta Physica Sinica, 2020, 69(3): 034401. doi: 10.7498/aps.69.20191185
    [6] Qian Zhi-Wen, Shang De-Jiang, Sun Qi-Hang, He Yuan-An, Zhai Jing-Sheng. Acoustic radiation from a cylinder in shallow water by finite element-parabolic equation method. Acta Physica Sinica, 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [7] Li Yun-Qing, Jiang Chen, Li Ying, Xu Feng, Xu Kai-Liang, Ta De-An, Le Lawrence H.. Multi-layer velocity model based synthetic aperture ultrasound imaging of cortical bone. Acta Physica Sinica, 2019, 68(18): 184302. doi: 10.7498/aps.68.20190763
    [8] Li Ming-Liang, Deng Ming-Xi, Gao Guang-Jian. Influences of the interfacial properties on second-harmonic generation by primary circumferential ultrasonic guided wave propagation in composite tube. Acta Physica Sinica, 2016, 65(19): 194301. doi: 10.7498/aps.65.194301
    [9] Gao Guang-Jian, Deng Ming-Xi, Li Ming-Liang, Liu Chang. Influence of the interfacial properties on guided circumferential wave propagation in the circular tube structure. Acta Physica Sinica, 2015, 64(22): 224301. doi: 10.7498/aps.64.224301
    [10] Zhang Zheng-Gang, Ta De-An. Study of bone fatigue evaluation with ultrasonic guide waves based on elastic modulus. Acta Physica Sinica, 2012, 61(13): 134304. doi: 10.7498/aps.61.134304
    [11] Lu Hai-Peng, Han Man-Gui, Deng Long-Jiang, Liang Di-Fei, Ou Yu. Finite elements micromagnetism simulation on the dynamic reversal of magnetic moments of Co nanowires. Acta Physica Sinica, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [12] Zhou Wang-Min, Cai Cheng-Yu, Wang Chong-Yu, Yin Shu-Yuan. Finite element analysis on stress distribution in buried quantum dots. Acta Physica Sinica, 2009, 58(8): 5585-5590. doi: 10.7498/aps.58.5585
    [13] Feng Yong-Ping, Cui Jun-Zhi, Deng Ming-Xiang. The two-scale finite element computation for thermoelastic problem in periodic perforated domain. Acta Physica Sinica, 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [14] Zhao Gui-Min, Lu Ming-Zhu, Wan Ming-Xi, Fang Li. Study of vibro-acoustography with high spatial resolution based on sector array transducers. Acta Physica Sinica, 2009, 58(9): 6596-6603. doi: 10.7498/aps.58.6596
    [15] Sun Hong-Xiang, Xu Bai-Qiang, Wang Ji-Jun, Xu Gui-Dong, Xu Chen-Guang, Wang Feng. Numerical simulation of laser-generated Rayleigh wave by finite element method on viscoelastic materials. Acta Physica Sinica, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [16] Tang Bo, Li Jun-Feng, Wang Tian-Shu. Numerical simulation of liquid drop phenomenon by least square particle finite element method. Acta Physica Sinica, 2008, 57(11): 6722-6729. doi: 10.7498/aps.57.6722
    [17] Liang Shuang, Lü Yan-Wu. The calculation of electronic structure in GaN/AlN quantum dots with finite element method. Acta Physica Sinica, 2007, 56(3): 1617-1620. doi: 10.7498/aps.56.1617
    [18] Wang Xin-Jun, Wang Ling-Ling, Huang Wei-Qing, Tang Li-Ming, Zou Bing-Suo, Chen Ke-Qiu. Influence of ternary mixed crystal defect layer on the localized interface optical-phonon modes in a finite superlattice. Acta Physica Sinica, 2007, 56(1): 429-436. doi: 10.7498/aps.56.429
    [19] Zhao Yan, Shen Zhong-Hua, Lu Jian, Ni Xiao-Wu. Finite element simulation of laser-generated circumferential waves in hollow cylinder. Acta Physica Sinica, 2007, 56(1): 321-326. doi: 10.7498/aps.56.321
    [20] DU GUANG-SHENG, WANG YAO-JUN, YUAN YI-FENG, ZHAO QING-CHANG. AXISYMMETRIC GUIDED WAVES IN CYLINDRICAL COMPOSITE STRUCTURES WITH WEAK INTERFACES. Acta Physica Sinica, 1998, 47(1): 27-34. doi: 10.7498/aps.47.27
Metrics
  • Abstract views:  5246
  • PDF Downloads:  182
  • Cited By: 0
Publishing process
  • Received Date:  05 April 2017
  • Accepted Date:  04 May 2017
  • Published Online:  05 August 2017

/

返回文章
返回