Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carrier selective contacts:a selection of high efficiency silicon solar cells

Xiao You-Peng Gao Chao Wang Tao Zhou Lang

Citation:

Carrier selective contacts:a selection of high efficiency silicon solar cells

Xiao You-Peng, Gao Chao, Wang Tao, Zhou Lang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Solar cell has two basic units:the photon absorption layer and the contact layer. The contact layer is a region between the highly recombination-active metal interface and the photon absorption layer. It is vital to reduce the recombination loss between the photon absorption layer and the contact layer in pursuit of the higher conversion efficiency of silicon solar cell. In recent years, carrier selective contact is arousing research interest in photovoltaic industry because it is deemed as one of the last remaining obstacles in approaching to the theoretical efficiency limit of silicon solar cell. In this paper, three different types of carrier selective contacts are analyzed, which includes:1) sandwiching a heavily doped thin layer between the photon absorption layer and the metal interface, which is the so-called emitter or back surface field; 2) aligning the conduction bands or the valence bands of two materials; 3) inducing the band bending through a high work function metal oxide contacting crystalline silicon. Based on one-dimensional solar cell simulation software wxAMPS, three different silicon solar cell structures are numerically simulated, which includes:1) diffused homojunction silicon solar cell[(p+)c-Si/(n)c-Si/(n+)c-Si]; 2) silicon heterojunction solar cell with amorphous silicon thin films[(p+)a-Si/(i)a-Si/(n)c-Si/(i)a-Si/(n+)a-Si]; 3) silicon heterojunction solar cell with metal oxide thin films[(n)MoOx/(n)c-Si/(n)TiOx], then the energy band structures and the spatial distributions of carrier concentrations of solar cells in the dark are discussed. The simulation results show that the key factor of carrier selective contacts is the asymmetric spatial distribution of the carrier concentrations, i.e. the asymmetric conductivities of electrons and holes. This leads to the formation of high resistance to electrons and low resistance to holes, or high resistance to holes and low resistance to electrons, so the holes will go through the contact easily and the electrons will be blocked simultaneously, or the electrons will go through the contact easily and the holes will be blocked simultaneously. Therefore a hole selective contact or a electron selective contact is formed, respectively.
      Corresponding author: Zhou Lang, lzhou@ncu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.51361022,61574072) and the PostDoctor Scientific Research Fund of Jiangxi Province,China (Grant No.2015KY12).
    [1]

    de Wolf S, Descoeudres A, Holman Z C, Ballif C 2012 Green 2 7

    [2]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nature Energy 2 17032

    [3]

    Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovolt. 3 1184

    [4]

    Feldmann F, Simon M, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Appl. Phys. Lett. 104 181105

    [5]

    Cuevas A, Allen T, Bullock J, Wan Y, Yan D, Zhang X 2015 Proceedings of the 42nd IEEE Photovoltaic Specialists Conference Los Angeles, USA, June 14-19, 2015 p1

    [6]

    Wrfel P, Wrfel U 2009Physics of Solar Cells: From Basic Principles to Advanced Concepts (New York: John Wiley Sons) pp93-98

    [7]

    Cuevas A, Yan D 2013 IEEE J. Photovolt. 3 916

    [8]

    Wrfel U, Cuevas A, Wrfel P 2015 IEEE J. Photovolt. 5 461

    [9]

    Brendel R, Peibst R 2016 IEEE J. Photovolt. 6 1413

    [10]

    Bivour M, Macco B, Temmler J, Kessels W M M, Hermle M 2016 Energy Procedia 92 443

    [11]

    Yablonovitch E, Gmitter T, Swanson R M, Kwark Y H 1985 Appl. Phys. Lett. 47 1211

    [12]

    Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124

    [13]

    Zhao L, Zhou C L, Li H L, Diao H M, Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673

    [14]

    Hua X, Li Z P, Shen W Z, Xiong G Y, Wang X S, Zhang L J 2012 IEEE Trans. Electron Dev. 59 1227

    [15]

    Islam R, Nazif K N, Saraswat K C 2016 IEEE Trans. Electron Dev. 63 4788

    [16]

    Bullock J, Cuevas A, Allen T, Battaglia C 2014 Appl. Phys. Lett. 105 232109

    [17]

    Battaglia C, Yin X, Zheng M, Sharp I D, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B, Maboudian R, Wallace R M, Javey A 2014 Nano Lett. 14 967

    [18]

    Bullock J, Wan Y, Hettick M, Geissbhler J, Ong A J, Kiriya D, Yan D, Allen T, Peng J, Zhang X, Sutter-Fella C M, de Wolf S, Ballif C, Cuevas A, Javey A 2016 Proceedings of the 43rd IEEE Photovoltaic Specialists Conference Portland, USA, June 5-10, 2016 p0210

    [19]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovolt. 4 96

    [20]

    Battaglia C, Nicols S M D, de Wolf S, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 113902

    [21]

    Ghannam M, Shehadah G, Abdulraheem Y, Poortmans J 2014 Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition Paris, France, September 30-October 4, 2014 p822

    [22]

    Rmer U, Peibst R, Ohrdes T, Lim B, Krgener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energy Mater. Sol. Cells 131 85

    [23]

    Bivour M, Reichel C, Hermle M, Glunz S W 2012 Sol. Energy Mater. Sol. Cells 106 11

    [24]

    Bivour M, Reusch M, Schrer S, Feldmann F, Temmler J, Steinkemper H, Hermle M 2014 IEEE J. Photovolt. 4 566

    [25]

    Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34

    [26]

    Geissbhler J, Werner J, Martin de Nicolas S, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, de Wolf S, Ballif C 2015 Appl. Phys. Lett. 107 081601

    [27]

    Meyer J, Hamwi S, Krger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408

    [28]

    Mcdonnell S, Azcatl A, Addou R, Gong C, Battaglia C, Chuang S, Cho K, Javey A, Wallace R M 2014 ACS Nano 8 6265

    [29]

    Gerling L G, Voz C, Alcubilla R, Puigdollers J 2017 J. Mater. Res. 32 260

    [30]

    Yang X, Zheng P, Bi Q, Weber K 2016 Sol. Energy Mater. Sol. Cells 150 32

    [31]

    Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109

    [32]

    Almora O, Gerling L G, Voz C, Alcubilla R, Puigdollers J, Garcia-Belmonte G 2017 Sol. Energy Mater. Sol. Cells 168 221

  • [1]

    de Wolf S, Descoeudres A, Holman Z C, Ballif C 2012 Green 2 7

    [2]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nature Energy 2 17032

    [3]

    Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovolt. 3 1184

    [4]

    Feldmann F, Simon M, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Appl. Phys. Lett. 104 181105

    [5]

    Cuevas A, Allen T, Bullock J, Wan Y, Yan D, Zhang X 2015 Proceedings of the 42nd IEEE Photovoltaic Specialists Conference Los Angeles, USA, June 14-19, 2015 p1

    [6]

    Wrfel P, Wrfel U 2009Physics of Solar Cells: From Basic Principles to Advanced Concepts (New York: John Wiley Sons) pp93-98

    [7]

    Cuevas A, Yan D 2013 IEEE J. Photovolt. 3 916

    [8]

    Wrfel U, Cuevas A, Wrfel P 2015 IEEE J. Photovolt. 5 461

    [9]

    Brendel R, Peibst R 2016 IEEE J. Photovolt. 6 1413

    [10]

    Bivour M, Macco B, Temmler J, Kessels W M M, Hermle M 2016 Energy Procedia 92 443

    [11]

    Yablonovitch E, Gmitter T, Swanson R M, Kwark Y H 1985 Appl. Phys. Lett. 47 1211

    [12]

    Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124

    [13]

    Zhao L, Zhou C L, Li H L, Diao H M, Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673

    [14]

    Hua X, Li Z P, Shen W Z, Xiong G Y, Wang X S, Zhang L J 2012 IEEE Trans. Electron Dev. 59 1227

    [15]

    Islam R, Nazif K N, Saraswat K C 2016 IEEE Trans. Electron Dev. 63 4788

    [16]

    Bullock J, Cuevas A, Allen T, Battaglia C 2014 Appl. Phys. Lett. 105 232109

    [17]

    Battaglia C, Yin X, Zheng M, Sharp I D, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B, Maboudian R, Wallace R M, Javey A 2014 Nano Lett. 14 967

    [18]

    Bullock J, Wan Y, Hettick M, Geissbhler J, Ong A J, Kiriya D, Yan D, Allen T, Peng J, Zhang X, Sutter-Fella C M, de Wolf S, Ballif C, Cuevas A, Javey A 2016 Proceedings of the 43rd IEEE Photovoltaic Specialists Conference Portland, USA, June 5-10, 2016 p0210

    [19]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovolt. 4 96

    [20]

    Battaglia C, Nicols S M D, de Wolf S, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 113902

    [21]

    Ghannam M, Shehadah G, Abdulraheem Y, Poortmans J 2014 Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition Paris, France, September 30-October 4, 2014 p822

    [22]

    Rmer U, Peibst R, Ohrdes T, Lim B, Krgener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energy Mater. Sol. Cells 131 85

    [23]

    Bivour M, Reichel C, Hermle M, Glunz S W 2012 Sol. Energy Mater. Sol. Cells 106 11

    [24]

    Bivour M, Reusch M, Schrer S, Feldmann F, Temmler J, Steinkemper H, Hermle M 2014 IEEE J. Photovolt. 4 566

    [25]

    Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34

    [26]

    Geissbhler J, Werner J, Martin de Nicolas S, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, de Wolf S, Ballif C 2015 Appl. Phys. Lett. 107 081601

    [27]

    Meyer J, Hamwi S, Krger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408

    [28]

    Mcdonnell S, Azcatl A, Addou R, Gong C, Battaglia C, Chuang S, Cho K, Javey A, Wallace R M 2014 ACS Nano 8 6265

    [29]

    Gerling L G, Voz C, Alcubilla R, Puigdollers J 2017 J. Mater. Res. 32 260

    [30]

    Yang X, Zheng P, Bi Q, Weber K 2016 Sol. Energy Mater. Sol. Cells 150 32

    [31]

    Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109

    [32]

    Almora O, Gerling L G, Voz C, Alcubilla R, Puigdollers J, Garcia-Belmonte G 2017 Sol. Energy Mater. Sol. Cells 168 221

  • [1] Li Xue-Rui, Lin Jun-Hui, Tang Rong, Zheng Zhuang-Hao, Su Zheng-Hua, Chen Shuo, Fan Ping, Liang Guang-Xing. Back contact optimization for Sb2Se3 solar cells. Acta Physica Sinica, 2023, 72(3): 036401. doi: 10.7498/aps.72.20221929
    [2] Ren Cheng-Chao, Zhou Jia-Kai, Zhang Bo-Yu, Liu Zhang, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Status and prospective of high-efficiency c-Si solar cells based on tunneling oxide passivation contacts. Acta Physica Sinica, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [3] Zhou Qing-Zhong, Guo Feng, Zhang Ming-Rui, You Qing-Liang, Xiao Biao, Liu Ji-Yan, Liu Cui, Liu Xue-Qing, Wang Liang. Impact of charge carrier recombination and energy disorder on the open-circuit voltage of polymer solar cells. Acta Physica Sinica, 2020, 69(4): 046101. doi: 10.7498/aps.69.20191699
    [4] Zhao Sheng-Sheng, Xu Yu-Zeng, Chen Jun-Fan, Zhang Li, Hou Guo-Fu, Zhang Xiao-Dan, Zhao Ying. Research progress of crystalline silicon solar cells with dopant-free asymmetric heterocontacts. Acta Physica Sinica, 2019, 68(4): 048801. doi: 10.7498/aps.68.20181991
    [5] Xiao Di, Wang Dong-Ming, Li Xun, Li Qiang, Shen Kai, Wang De-Zhao, Wu Ling-Ling, Wang De-Liang. Nickel oxide as back surface field buffer layer in CdTe thin film solar cell. Acta Physica Sinica, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [6] Qi Jia-Hong, Hu Jian-Min, Sheng Yan-Hui, Wu Yi-Yong, Xu Jian-Wen, Wang Yue-Yuan, YANG Xiao-Ming, Zhang Zi-Rui, Zhou Yang. Carrier transport mechanism of GaAs/Ge solar cells under electrons irradiation. Acta Physica Sinica, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [7] Jia Xiao-Jie, Ai Bin, Xu Xin-Xiang, Yang Jiang-Hai, Deng You-Jun, Shen Hui. Two-dimensional device simulation and performance optimization of crystalline silicon selective-emitter solar cell. Acta Physica Sinica, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [8] Shen Hong-Xia, Wu Guo-Zhen, Wang Pei-Jie. The chiral asymmetry of R-(-)1,3-butanediol as revealed by its Raman differential bond polarizabilities. Acta Physica Sinica, 2013, 62(15): 153301. doi: 10.7498/aps.62.153301
    [9] Jia He-Shun, Luo Lei, Li Bing-Lin, Xu Zhen-Hua, Ren Xian-Kun, Jiang Yan-Sen, Cheng Liang, Zhang Chun-Yan. Performance of polycrystal silicon color solar cells. Acta Physica Sinica, 2013, 62(16): 168802. doi: 10.7498/aps.62.168802
    [10] Wang Li, Zhang Xiao-Dan, Yang Xu, Wei Chang-Chun, Zhang De-Kun, Wang Guang-Cai, Sun Jan, Zhao Ying. Study of the contact property between BZO and p-a-SiC in amorphous silicon solar cell. Acta Physica Sinica, 2013, 62(5): 058801. doi: 10.7498/aps.62.058801
    [11] Xia Zhong-Qiu, Li Rong-Ping. First principles study of rare earth doped in ZnTe used for CdTe solar cell back contact layer. Acta Physica Sinica, 2012, 61(1): 017108. doi: 10.7498/aps.61.017108
    [12] Xu Shuang-Ying, Hu Lin-Hua, Li Wen-Xin, Dai Song-Yuan. Effect of interface contacts between TiO2 particles on electron transport in dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(11): 116802. doi: 10.7498/aps.60.116802
    [13] Li Feng, Ma Zhong-Quan, Meng Xia-Jie, Yin Yan-Ting, Yu Zheng-Shan, Lü Peng. Influence of Fe-B pairs on minority carrier lifetime, trapping density and internal quantum efficiency in mono-crystal Si solar cells. Acta Physica Sinica, 2010, 59(6): 4322-4329. doi: 10.7498/aps.59.4322
    [14] Zhang Yong, Liu Yan, Lü Bin, Tang Nai-Yun, Wang Ji-Qing, Zhang Hong-Ying. Influence of barrier height of the front contact on the amorphous silicon and microcrystalline silicon heterojunction solar cells. Acta Physica Sinica, 2009, 58(4): 2829-2835. doi: 10.7498/aps.58.2829
    [15] Song Hui-Jin, Zheng Jia-Gui, Feng Liang-Huan, Cai Wei, Cai Ya-Ping, Zhang Jing-Quan, Li Wei, Li Bing, Wu Li-Li, Lei Zhi, Yan Qiang. Performance of CdTe solar cells with different back electrodes and back contact layers. Acta Physica Sinica, 2007, 56(3): 1655-1661. doi: 10.7498/aps.56.1655
    [16] He Jian-Xiong, Zheng Jia-Gui, Li Wei, Feng Liang-Huan, Cai Wei, Cai Ya-Ping, Zhang Jing-Quan, Li Bing, Lei Zhi, Wu Li-Li, Wang Wen-Wu. A study of back contacts of CdTe thin film solar cells. Acta Physica Sinica, 2007, 56(9): 5548-5553. doi: 10.7498/aps.56.5548
    [17] Zhang Xiao-Dan, Zhao Ying, Gao Yan-Tao, Chen Fei, Zhu Feng, Wei Chang-Chun, Sun Jian, Geng Xin-Hua, Xiong Shao-Zhen. Investigation of improved conversion efficiency of microcrystalline silicon thin film solar cells. Acta Physica Sinica, 2006, 55(12): 6697-6700. doi: 10.7498/aps.55.6697
    [18] Zhang Xiao-Dan, Zhao Ying, Gao Yang-Tao, Zhu Feng, Wei Chang-Chun, Sun Jian, Geng Xin-Hua, Xiong Shao-Zhen. Fabrication of intrinsic microcrystalline silicon thin films used for solar cells and its structure. Acta Physica Sinica, 2005, 54(10): 4874-4878. doi: 10.7498/aps.54.4874
    [19] Hu Zhi-Hua, Liao Xian-Bo, Diao Hong-Wei, Xia Chao-Feng, Xu Ling, Zeng Xiang-Bo, Hao Hui-Ying, Kong Guang-Lin. AMPS modeling of light J-V characteristics of a-Si based solar cells. Acta Physica Sinica, 2005, 54(5): 2302-2306. doi: 10.7498/aps.54.2302
    [20] Zhu Jian-Min, Shen Wen-Zhong. Step scan time resolved spectroscopy and its application to photoconductivity of Si solar cells*. Acta Physica Sinica, 2004, 53(11): 3716-3723. doi: 10.7498/aps.53.3716
Metrics
  • Abstract views:  7884
  • PDF Downloads:  455
  • Cited By: 0
Publishing process
  • Received Date:  06 April 2017
  • Accepted Date:  03 May 2017
  • Published Online:  05 August 2017

/

返回文章
返回