Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Ga doping on the thermoelectric performance of Cu3SbSe4

Chen Luo-Na Liu Ye-Feng Zhang Ji-Ye Yang Jiong Xing Juan-Juan Luo Jun Zhang Wen-Qing

Citation:

Effect of Ga doping on the thermoelectric performance of Cu3SbSe4

Chen Luo-Na, Liu Ye-Feng, Zhang Ji-Ye, Yang Jiong, Xing Juan-Juan, Luo Jun, Zhang Wen-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The Cu3SbSe4 compound is an environmentally friendly and low-cost medium-temperature thermoelectric material, which is featured by its low thermal conductivity. The disadvantage of this compound lies in its intrinsic poor electrical transport property. In order to improve the electrical conductivity of Cu3SbSe4, in this work we are to increase its carrier concentration by one to two orders of magnitude though elemental doping. The sample composition of Cu2.95GaxSb1-xSe4 is designed to increase the hole carrier concentration by introducing Cu vacancies and substituting Ga3+ for Sb5+. The Cu2.95GaxSb1-xSe4 (x=0, 0.01, 0.02 and 0.04) samples are prepared by melting-quench method. The X-ray diffraction analysis indicates that the obtained samples are of single-phase with the tetragonal famatinite structure, and the energy-dispersive X-ray spectroscopy results show that the actual compositions of the samples are very close to their nominal compositions. The effect of Ga doping on the thermoelectric performance of Cu3SbSe4 compound is investigated systematically by electrical and thermal transport property measurements. According to our experimental results, the hole concentration of the sample is efficiently increased by substituting Sb with a small amount of Ga (x=0.01), which can not only substantially improve the electrical conductivity but also suppress the intrinsic excitation of the sample. The maximum power factor reaches 10 μW/cm·K2 at 625 K for the Ga doped sample with x=0.01, which is nearly twice as much as that of the sample free of Ga. Although the carrier concentration further increases with increasing Ga content, the hole mobility decreases dramatically with the Ga content increasing due to the increased hole effective mass and point defect scattering. Thus, the electrical transport properties of the samples deteriorate at higher Ga content, and the maximum power factors for the samples with x=0.02 and 0.04 reach 9 and 8 μW/cm·K2 at 625 K, respectively. The lattice thermal conductivities of the samples basically comply with the T-1 relationship, suggesting the phonon U-process is the dominant scattering mechanism in our samples. For the samples with x=0 and 0.01, the lattice thermal conductivities at high temperature deviate slightly from the T-1 curve due to the presence of intrinsic excitation. However, these deviations are eliminated for the samples with x=0.02 and 0.04 because the bipolar effect is effectively suppressed with the increasing of Ga content. Thus, Ga doping can reduce the bipolar thermal conductivity at high temperature by increasing the hole carrier concentration. Furthermore, the point defects introduced by Ga doping can also enhance the scattering of high-frequency phonons, leading to slightly reduced lattice thermal conductivities of Ga-doped samples at higher temperature. Finally, a maximum ZT value of 0.53 at 664 K is achieved in Ga-doped sample, which is 50% higher than that of the sample free of Ga.
    [1]

    Bell L E 2008 Science 321 1457

    [2]

    DiSalvo F J 1999 Science 285 703

    [3]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357

    [4]

    Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2013 Inter. Mater. Rev. 48 45

    [5]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

    [6]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [7]

    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K, Chen G, Ren Z 2012 Energy Environ. Sci. 5 5246

    [8]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229

    [9]

    Heremans J P, Thrush C M, Morelli D T 2004 Phys. Rev. B 70 115334

    [10]

    Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G, Ren Z 2008 Science 320 634

    [11]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818

    [12]

    Cho J Y, Shi X, Salvador J R, Yang J, Wang H 2010 J. Appl. Phys. 108 073713

    [13]

    Skoug E J, Cain J D, Morelli D T 2010 J. Alloys Compd. 506 18

    [14]

    Shi X, Xi L, Fan J, Zhang W, Chen L 2010 Chem. Mater. 22 6029

    [15]

    Cui J, Li Y, Du Z, Meng Q, Zhou H 2013 J. Mater. Chem. A 1 677

    [16]

    Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem. Commun. 48 3818

    [17]

    Zeier W G, Pei Y, Pomrehn G, Day T, Heinz N, Heinrich C P, Snyder G J, Tremel W 2013 J. Am. Chem. Soc. 135 726

    [18]

    Suzumura A, Watanabe M, Nagasako N, Asahi R 2014 J. Electron. Mater. 43 2356

    [19]

    Wei T R, Wang H, Gibbs Z M, Wu C F, Snyder G J, Li J F 2014 J. Mater. Chem. A 2 13527

    [20]

    Pei Y, Tan G, Feng D, Zheng L, Tan Q, Xie X, Gong S, Chen Y, Li J F, He J, Kanatzidis M G, Zhao L D 2017 Adv. Energy Mater. 7 1601450

    [21]

    Do D T, Mahanti S D 2015 J. Alloys Compd. 625 346

    [22]

    Yang C, Huang F, Wu L, Xu K 2011 J. Phys. D:Appl. Phys. 44 295404

    [23]

    Li X Y, Li D, Xin H X, Zhang J, Song C J, Qin X Y 2013 J. Alloys Compd. 561 105

    [24]

    Li D, Li R, Qin X Y, Song C J, Xin H X, Wang L, Zhang J, Guo G L, Zou T H, Liu Y F, Zhu X G 2014 Dalton Trans. 43 1888

    [25]

    Liu Y, García G, Ortega S, Cadavid D, Palacios P, Lu J, Ibáñez M, Xi L, de Roo J, López A M, Martí-Sánchez S, Cabezas I, Mata M D L, Luo Z, Dun C, Dobrozhan O, Carroll D L, Zhang W, Martins J, Kovalenko M V, Arbiol J, Noriega G, Song J, Wahnón P, Cabot A 2017 J. Mater. Chem. A 5 2592

    [26]

    Li Y, Qin X, Li D, Li X, Liu Y, Zhang J, Song C, Xin H 2015 RSC Adv. 5 31399

    [27]

    Zhang D, Yang J, Jiang Q, Fu L, Xiao Y, Luo Y, Zhou Z 2016 Mater. Design 98 150

    [28]

    Wei T R, Li F, Li J F 2014 J. Electron. Mater. 43 2229

    [29]

    Kumar A, Dhama P, Saini D S, Banerji P 2016 RSC Adv. 6 5528

    [30]

    Goldsmid H J, Sharp J W 1999 J. Electron. Mater. 28 869

    [31]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [32]

    Pichanusakorn P, Bandaru P 2010 Mat. Sci. Eng. R 67 19

    [33]

    May A F, Toberer E S, Saramat A, Snyder G J 2009 Phys. Rev. B 80 125205

    [34]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506

    [35]

    Zhang Y, Skoug E, Cain J, Ozoliņš V, Morelli D, Wolverton C 2012 Phys. Rev. B 85 054306

  • [1]

    Bell L E 2008 Science 321 1457

    [2]

    DiSalvo F J 1999 Science 285 703

    [3]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357

    [4]

    Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2013 Inter. Mater. Rev. 48 45

    [5]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

    [6]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [7]

    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K, Chen G, Ren Z 2012 Energy Environ. Sci. 5 5246

    [8]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229

    [9]

    Heremans J P, Thrush C M, Morelli D T 2004 Phys. Rev. B 70 115334

    [10]

    Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G, Ren Z 2008 Science 320 634

    [11]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818

    [12]

    Cho J Y, Shi X, Salvador J R, Yang J, Wang H 2010 J. Appl. Phys. 108 073713

    [13]

    Skoug E J, Cain J D, Morelli D T 2010 J. Alloys Compd. 506 18

    [14]

    Shi X, Xi L, Fan J, Zhang W, Chen L 2010 Chem. Mater. 22 6029

    [15]

    Cui J, Li Y, Du Z, Meng Q, Zhou H 2013 J. Mater. Chem. A 1 677

    [16]

    Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem. Commun. 48 3818

    [17]

    Zeier W G, Pei Y, Pomrehn G, Day T, Heinz N, Heinrich C P, Snyder G J, Tremel W 2013 J. Am. Chem. Soc. 135 726

    [18]

    Suzumura A, Watanabe M, Nagasako N, Asahi R 2014 J. Electron. Mater. 43 2356

    [19]

    Wei T R, Wang H, Gibbs Z M, Wu C F, Snyder G J, Li J F 2014 J. Mater. Chem. A 2 13527

    [20]

    Pei Y, Tan G, Feng D, Zheng L, Tan Q, Xie X, Gong S, Chen Y, Li J F, He J, Kanatzidis M G, Zhao L D 2017 Adv. Energy Mater. 7 1601450

    [21]

    Do D T, Mahanti S D 2015 J. Alloys Compd. 625 346

    [22]

    Yang C, Huang F, Wu L, Xu K 2011 J. Phys. D:Appl. Phys. 44 295404

    [23]

    Li X Y, Li D, Xin H X, Zhang J, Song C J, Qin X Y 2013 J. Alloys Compd. 561 105

    [24]

    Li D, Li R, Qin X Y, Song C J, Xin H X, Wang L, Zhang J, Guo G L, Zou T H, Liu Y F, Zhu X G 2014 Dalton Trans. 43 1888

    [25]

    Liu Y, García G, Ortega S, Cadavid D, Palacios P, Lu J, Ibáñez M, Xi L, de Roo J, López A M, Martí-Sánchez S, Cabezas I, Mata M D L, Luo Z, Dun C, Dobrozhan O, Carroll D L, Zhang W, Martins J, Kovalenko M V, Arbiol J, Noriega G, Song J, Wahnón P, Cabot A 2017 J. Mater. Chem. A 5 2592

    [26]

    Li Y, Qin X, Li D, Li X, Liu Y, Zhang J, Song C, Xin H 2015 RSC Adv. 5 31399

    [27]

    Zhang D, Yang J, Jiang Q, Fu L, Xiao Y, Luo Y, Zhou Z 2016 Mater. Design 98 150

    [28]

    Wei T R, Li F, Li J F 2014 J. Electron. Mater. 43 2229

    [29]

    Kumar A, Dhama P, Saini D S, Banerji P 2016 RSC Adv. 6 5528

    [30]

    Goldsmid H J, Sharp J W 1999 J. Electron. Mater. 28 869

    [31]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [32]

    Pichanusakorn P, Bandaru P 2010 Mat. Sci. Eng. R 67 19

    [33]

    May A F, Toberer E S, Saramat A, Snyder G J 2009 Phys. Rev. B 80 125205

    [34]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506

    [35]

    Zhang Y, Skoug E, Cain J, Ozoliņš V, Morelli D, Wolverton C 2012 Phys. Rev. B 85 054306

  • [1] Liu Rong-Tao, Wang Chen-Yang, Huang Jia-Mian, Luo Peng-Fei, Liu Xin, Ye Song, Dong Zi-Rui, Zhang Ji-Ye, Luo Jun. Preparation and thermoelectric properties of Sc-doped Ti1–xNiSb half-Heusler alloys. Acta Physica Sinica, 2023, 72(8): 087201. doi: 10.7498/aps.72.20230035
    [2] Zi Peng, Bai Hui, Wang Cong, Wu Yu-Tian, Ren Pei-An, Tao Qi-Rui, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric performance of AgyIn3.33–y/3Se5 compounds. Acta Physica Sinica, 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [3] Chen Shang-Feng, Sun Nai-Kun, Zhang Xian-Min, Wang Kai, Li Wu, Han Yan, Wu Li-Jun, Dai Qin. Preparation and thermoelectric properties of Mn3As2-doped Cd3As2 nanostructures. Acta Physica Sinica, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [4] Li Cai-Yun, He Wen-Ke, Wang Dong-Yang, Zhang Xiao, Zhao Li-Dong. Realizing high thermoelectric performance in SnSe2 via intercalating Cu. Acta Physica Sinica, 2021, 70(20): 208401. doi: 10.7498/aps.70.20211444
    [5] Wang Mo-Fan, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions. Acta Physica Sinica, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [6] Zou Ping, Lü Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [7] Zheng Li-Xian, Hu Jian-Feng, Luo Jun. Thermoelectric properties of Cu-doped Cu2SnSe4 compounds. Acta Physica Sinica, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [8] Yuan Guo-Cai, Chen Xi, Huang Yu-Yang, Mao Jun-Xi, Yu Jin-Qiu, Lei Xiao-Bo, Zhang Qin-Yong. Comparative study of thermoelectric properties of Mg2Si0.3Sn0.7 doped by Ag or Li. Acta Physica Sinica, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [9] Zhang Fei-Peng, Zhang Jing-Wen, Zhang Jiu-Xing, Yang Xin-Yu, Lu Qing-Mei, Zhang Xin. Effects of Sr doping on electronic and thermoelectrical transport properties of CaMnO3 based oxide. Acta Physica Sinica, 2017, 66(24): 247202. doi: 10.7498/aps.66.247202
    [10] Zhou Xiao-Hong, Yang Qing, Zou Jun-Tao, Liang Shu-Hua. Effects of growth conditions on the microstructures and photoluminescence properties of Ga-doped ZnO films. Acta Physica Sinica, 2015, 64(8): 087803. doi: 10.7498/aps.64.087803
    [11] Sun Zheng, Chen Shao-Ping, Yang Jiang-Feng, Meng Qing-Sen, Cui Jiao-Lin. Thermoelectric properties of chalcopyrite Cu3Ga5Te9 with Sb non-isoelectronic substitution for Cu and Te. Acta Physica Sinica, 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [12] Wu Zi-Hua, Xie Hua-Qing. Study on the preparation and properties of polyparaphenylene/LiNi0.5Fe2O4 anocomposite thermoelectric materials. Acta Physica Sinica, 2012, 61(7): 076502. doi: 10.7498/aps.61.076502
    [13] Yu Bo. The effects of Ag-doping on thermoelectric properties of p-type Pb0.5Sn0.5Te compound. Acta Physica Sinica, 2012, 61(21): 217104. doi: 10.7498/aps.61.217104
    [14] Sun Yi, Wang Chun-Lei, Wang Hong-Chao, Su Wen-Bin, Liu Jian, Peng Hua, Mei Liang-Mo. Influence of sintering temperature on thermoelectric properties of La0.1Sr0.9TiO3 ceramics. Acta Physica Sinica, 2012, 61(16): 167201. doi: 10.7498/aps.61.167201
    [15] Zhang He, Luo Jun, Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui. Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2. Acta Physica Sinica, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [16] Zhou Li-Mei, Li Wei, Jiang Jun, Chen Jian-Min, Li Yong, Xu Gao-Jie. Preparation and thermoelectric properties of β-Zn4Sb3/Zn1-δAlδO. Acta Physica Sinica, 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [17] Su Xian-Li, Tang Xin-Feng, Li Han, Deng Shu-Kang. Structure and thermoelectric properties of n-type GaxCo4Sb12 skutterudite compounds. Acta Physica Sinica, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [18] Xiong Cong, Tang Xin-Feng, Qi Qiong, Deng Shu-Kang, Zhang Qing-Jie. Synthesis and thermoelectric properties of Sb-doped type-Ⅰ Ge clathrates Ba8Ga16-xSbxGe30. Acta Physica Sinica, 2006, 55(12): 6630-6636. doi: 10.7498/aps.55.6630
    [19] Jiang Jun, Xu Gao-Jie, Cui Ping, Chen Li-Dong. Dependence of thermoelectric properties of n-type Bi2Te3-based sintered materials on the TeI4 doping content. Acta Physica Sinica, 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
    [20] Tang Xin-feng, Chen Li-Dong, T Goto, T Hiral, Yuan Run-Zhang. Thermoelectricpropertiesofn typeBayNixCo4-xSb1 2. Acta Physica Sinica, 2002, 51(12): 2823-2828. doi: 10.7498/aps.51.2823
Metrics
  • Abstract views:  4435
  • PDF Downloads:  274
  • Cited By: 0
Publishing process
  • Received Date:  20 April 2017
  • Accepted Date:  09 June 2017
  • Published Online:  05 August 2017

/

返回文章
返回