Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles calculation of influence of alloying elements on NbC heterogeneous nucleation in steel

Xiong Hui-Hui Liu Zhao Zhang Heng-Hua Zhou Yang Yu Yuan

Citation:

First-principles calculation of influence of alloying elements on NbC heterogeneous nucleation in steel

Xiong Hui-Hui, Liu Zhao, Zhang Heng-Hua, Zhou Yang, Yu Yuan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The NbC precipitated in steel is in favor of the heterogeneous nucleation of ferrite, which is affected by the alloying elements at the ferrite/NbC interface. However, it is difficult to clearly understand the effect of alloying elements on the ferrite/NbC interface behavior experimentally. Therefore, the first-principles calculation is employed to address this problem in this paper. First of all, the segregation behaviors of alloying element X (=Cr, Mn, Mo, W, Zr, V, Ti, Cu and Ni) on the ferrite(100)/NbC(100) interface are systematically explored. And then, we investigate the influences of these alloying elements on the property of the ferrite/NbC interface. The work of adhesion (Wad), interfacial energy (γint) and electronic structure of ferrite/NbC interface alloyed by these elements are also analyzed. The results show that the (Cr, V, Ti)-doped interfaces have negative segregation energies, which indicates that Cr, V and Ti are easily segregated at the ferrite/NbC interface. Conversely, the Mn, W, Mo, Zr, Cu and Ni are difficult to segregate at the interface. When Mn, Zr, Cu and Ni replace the Fe atoms in the ferrite/NbC interface, the adhesive strength of the interface will decrease, thus weakening the heterogeneous nucleation of ferrite on NbC surface. However, the introduction of Cr, W, Mo, V and Ti will improve the stability of the ferrite/NbC interface due to the larger Wad and lower γint. Therefore, the Cr, W, Mo, V and Ti on the ferrite side of the interface can effectively promote ferrite heterogeneous nucleation on NbC surface to form fine ferrite grain. The analysis of difference charge density indicates that after the introduction of Zr and Cu in ferrite/NbC interface, the interactions among interfacial Zr, Cu and C atoms was weaken. However, when Cr and W are introduced into the clean interface, the strong Cr-C and W-C non-polar covalent bonds are formed, which enhances the adhesion strength of the ferrite/NbC interface. In addition, the minimum Cr-C bonding length at the Cr-doped interface suggests that the interface has the highest interface strength. The Mulliken population analysis shows that for the (Cr, W, Mo, V, Ti)-doped interfaces, the transfer charges of Cr, W, Mo, V and Ti are 1.12, 0.84, 0.54, 0.33 and 0.28, respectively. Nevertheless, for the clean interface, the transfer charge of Fe is only 0.05. Therefore, the interactions among interfacial Cr, W, Mo, V, Ti and C atoms are stronger than that between interfacial Fe and C atoms, which is in good accordance with the above analysis.
      Corresponding author: Xiong Hui-Hui, xionghui8888@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51404113, 51404110) and Innovation Training Program of Jiangxi University of Science and Technology, China (Grant No. XZG-16-08-14).
    [1]

    Matsuo S, Ando T, Grant N J 2000 Mater. Sci. Eng. A 288 34

    [2]

    Adamczyk J, Kalinowska E, Ozgowicz W, Wusatowski R 1995 J. Mater. Process. Technol. 53 23

    [3]

    Ghosh P, Ghosh C, Ray R K 2010 Acta Mater. 58 3842

    [4]

    Ghosh P, Ray R K, Ghosh C, Bhattacharjee D 2008 Scripta Mater. 58 939

    [5]

    Hong S G, Jun H J, Kang K B, Park C G 2003 Scripta Mater. 48 1201

    [6]

    Ju B, Wu H B, Tang D, Dang N 2016 J. Iron Steel Res. Int. 23 495

    [7]

    Hin C, Bréchet Y, Maugis P, Soisson F 2008 Acta Mater. 56 5653

    [8]

    Chung S H, Ha H P, Jung W S, Byun J Y 2006 ISIJ Int. 46 1523

    [9]

    Mizuno M, Tanaka I, Adachi H 1998 Acta Mater. 46 1637

    [10]

    Sawada H, Taniguchi S, Kawakami K, Ozaki T 2013 Modell. Simul. Mater. Sci. Eng. 21 045012

    [11]

    Jung W S, Chung S H, Ha H P, Byun J Y 2007 Solid State Phenom. 124 1625

    [12]

    Li Y, Gao Y, Xiao B, Min T, Ma S, Yi D 2011 Appl. Surf. Sci. 257 5671

    [13]

    Xie Y P, Zhao S J 2012 Comput. Mater. Sci. 63 329

    [14]

    Abdelkader H, Faraoun H I, Esling C 2011 J. Appl. Phys. 110 044901

    [15]

    Wang C, Wang C Y 2008 Surf. Sci. 602 2604

    [16]

    Zhang H Z, Wang S Q 2007 J. Phys. Condens. Matter 19 226003

    [17]

    Sun T, Wu X Z, Li W G, Wang R 2015 Phys. Scr. 90 035701

    [18]

    Segall M D, Philip J D L, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [20]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [21]

    Jang J H, Lee C H, Heo Y U, Suh D W 2012 Acta Mater. 60 208

    [22]

    Fors D H R, Wahnström G 2010 Phys. Rev. B 82 195410

    [23]

    Wang J W, Fan J L, Gong H R 2016 J. Alloys Compd. 661 553

    [24]

    Li J, Yang Y, Li L, Lou J, Luo X, Huang B 2013 J. Appl. Phys. 113 023516

    [25]

    Li J, Yang Y, Feng G, Luo X, Sun Q, Jin N 2013 J. Appl. Phys. 114 163522

    [26]

    Zhang Z, Sun X, Wang Z, Li Z, Yong Q, Wang G 2015 Mater. Lett. 159 249

    [27]

    Cao J, Yong Q, Liu Q, Sun X 2007 J. Mater. Sci. 42 10080

    [28]

    Han Y F, Dai Y B, Wang J, Shu D, Sun B D 2011 Appl. Surf. Sci. 257 7831

    [29]

    Lu S, Hu Q M, Yang R, Johansson B, Vitos L 2010 Phys. Rev. B 82 195103

    [30]

    Lee S J, Lee Y K, Soon A 2012 Appl. Surf. Sci. 258 9977

    [31]

    Yang M, Xu J G, Song H Y, Zhang Y G 2015 Chin. Phys. B 24 096202

    [32]

    Segall M D, Shah R, Pickard C J, Payne M C 1996 Phys. Rev. B 54 16317

  • [1]

    Matsuo S, Ando T, Grant N J 2000 Mater. Sci. Eng. A 288 34

    [2]

    Adamczyk J, Kalinowska E, Ozgowicz W, Wusatowski R 1995 J. Mater. Process. Technol. 53 23

    [3]

    Ghosh P, Ghosh C, Ray R K 2010 Acta Mater. 58 3842

    [4]

    Ghosh P, Ray R K, Ghosh C, Bhattacharjee D 2008 Scripta Mater. 58 939

    [5]

    Hong S G, Jun H J, Kang K B, Park C G 2003 Scripta Mater. 48 1201

    [6]

    Ju B, Wu H B, Tang D, Dang N 2016 J. Iron Steel Res. Int. 23 495

    [7]

    Hin C, Bréchet Y, Maugis P, Soisson F 2008 Acta Mater. 56 5653

    [8]

    Chung S H, Ha H P, Jung W S, Byun J Y 2006 ISIJ Int. 46 1523

    [9]

    Mizuno M, Tanaka I, Adachi H 1998 Acta Mater. 46 1637

    [10]

    Sawada H, Taniguchi S, Kawakami K, Ozaki T 2013 Modell. Simul. Mater. Sci. Eng. 21 045012

    [11]

    Jung W S, Chung S H, Ha H P, Byun J Y 2007 Solid State Phenom. 124 1625

    [12]

    Li Y, Gao Y, Xiao B, Min T, Ma S, Yi D 2011 Appl. Surf. Sci. 257 5671

    [13]

    Xie Y P, Zhao S J 2012 Comput. Mater. Sci. 63 329

    [14]

    Abdelkader H, Faraoun H I, Esling C 2011 J. Appl. Phys. 110 044901

    [15]

    Wang C, Wang C Y 2008 Surf. Sci. 602 2604

    [16]

    Zhang H Z, Wang S Q 2007 J. Phys. Condens. Matter 19 226003

    [17]

    Sun T, Wu X Z, Li W G, Wang R 2015 Phys. Scr. 90 035701

    [18]

    Segall M D, Philip J D L, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [20]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [21]

    Jang J H, Lee C H, Heo Y U, Suh D W 2012 Acta Mater. 60 208

    [22]

    Fors D H R, Wahnström G 2010 Phys. Rev. B 82 195410

    [23]

    Wang J W, Fan J L, Gong H R 2016 J. Alloys Compd. 661 553

    [24]

    Li J, Yang Y, Li L, Lou J, Luo X, Huang B 2013 J. Appl. Phys. 113 023516

    [25]

    Li J, Yang Y, Feng G, Luo X, Sun Q, Jin N 2013 J. Appl. Phys. 114 163522

    [26]

    Zhang Z, Sun X, Wang Z, Li Z, Yong Q, Wang G 2015 Mater. Lett. 159 249

    [27]

    Cao J, Yong Q, Liu Q, Sun X 2007 J. Mater. Sci. 42 10080

    [28]

    Han Y F, Dai Y B, Wang J, Shu D, Sun B D 2011 Appl. Surf. Sci. 257 7831

    [29]

    Lu S, Hu Q M, Yang R, Johansson B, Vitos L 2010 Phys. Rev. B 82 195103

    [30]

    Lee S J, Lee Y K, Soon A 2012 Appl. Surf. Sci. 258 9977

    [31]

    Yang M, Xu J G, Song H Y, Zhang Y G 2015 Chin. Phys. B 24 096202

    [32]

    Segall M D, Shah R, Pickard C J, Payne M C 1996 Phys. Rev. B 54 16317

  • [1] Liu Zhi-Cheng, Zhou Jie, Chen Fan, Peng Biao, Peng Wen-Yi, Zhang Ai-Sheng, Deng Xiao-Hua, Luo Xian-Zhi, Liu Ri-Xin, Liu De-Wu, Huang Yu, Yan Jun. First-principles study of influence of Si on γ phase in Inconel 718 alloy. Acta Physica Sinica, 2023, 72(18): 186301. doi: 10.7498/aps.72.20230583
    [2] Wu Di, Yang Yong, Zhang Xiao-Feng, Huang Zhen-Yi, Wang Zhao-Dong. First-principles study on effect of alloying elements on heterogeneous nucleation of reverse austenite on Cu precipitation. Acta Physica Sinica, 2022, 71(8): 086301. doi: 10.7498/aps.71.20212144
    [3] Yao Zhong-Yu, Sun Li, Pan Meng-Mei, Sun Shu-Juan, Liu Han-Jun. First-principles study on half-metallic ferromagnetism of half-Heusler alloys VLiBi and CrLiBi. Acta Physica Sinica, 2018, 67(21): 217501. doi: 10.7498/aps.67.20181129
    [4] Yan Shun-Tao, Jiang Zhen-Yi. First principles study of the effect of Cu doping on the martensitic transformation of TiNi alloy. Acta Physica Sinica, 2017, 66(13): 130501. doi: 10.7498/aps.66.130501
    [5] Yao Zhong-Yu, Sun Li, Pan Meng-Mei, Sun Shu-Juan. First-principle studies of half-metallicities and magnetisms of the semi-Heusler alloys CoCrTe and CoCrSb. Acta Physica Sinica, 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [6] Xiong Hui-Hui, Zhang Hui-Ning. First-principles investigation on partitioning behavior of rare earth elements between α-Fe and Fe3C. Acta Physica Sinica, 2016, 65(24): 248101. doi: 10.7498/aps.65.248101
    [7] Ma Lei, Wang Xu, Shang Jia-Xiang. Effect of Pd in NiTi on the martensitic transformation temperatures and hysteresis: a first-principles study. Acta Physica Sinica, 2014, 63(23): 233103. doi: 10.7498/aps.63.233103
    [8] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [9] Zou Xiao-Cui, Wu Mu-Sheng, Liu Gang, Ouyang Chu-Ying, Xu Bo. First-principles study on the electronic structures of β-SiC/carbon nanotube core-shell structures. Acta Physica Sinica, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [10] Zhao Rong-Da, Zhu Jing-Chuan, Liu Yong, Lai Zhong-Hong. First-principles study of FeAl(B2) microalloyed with La, Ac, Sc and Y. Acta Physica Sinica, 2012, 61(13): 137102. doi: 10.7498/aps.61.137102
    [11] Ru Qiang, Li Yan-Ling, Hu She-Jun, Peng Wei, Zhang Zhi-Wen. The investigation of lithium insertion mechanism for Sn3InSb4 alloy based on first-principle calculation. Acta Physica Sinica, 2012, 61(3): 038210. doi: 10.7498/aps.61.038210
    [12] Li Ai-Hong, Mu Yan-Qing, Yang Wei-Ming, Hou Hua, Han Pei-De, Zhang Su-Ying, Huang Zhi-Wei, Zhao Yu-Hong. First principles study on substitution behavior and alloying effects of Nb in Ni3Al. Acta Physica Sinica, 2011, 60(4): 047103. doi: 10.7498/aps.60.047103
    [13] Wang Yu-Mei, Pei Hui-Xia, Ding Jun, Wen Li-Wei. First-principles study of magnetism and electronic structureof Sb-containing half-Heusler alloys. Acta Physica Sinica, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [14] Hu Yu-Ping, Ping Kai-Bin, Yan Zhi-Jie, Yang Wen, Gong Chang-Wei. First-principles calculations of structure and magnetic properties of -Fe(Si)phase precipitated in the Finemet alloy. Acta Physica Sinica, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [15] Zheng Hao-Yong, Wang Meng, Wang Xiu-Xing, Huang Wei-Dong. Analysis of heterogeneous nucleation on rough surfacesbased on Wenzel model. Acta Physica Sinica, 2011, 60(6): 066402. doi: 10.7498/aps.60.066402
    [16] Zhang Hai-Bo, Wang Zhi-Guo, Zu Xiao-Tao, Yang Ding-Yu, Zhu Xing-Hua. First principles study of electronic properties of carbon/silicon carbide nanotube heterojunction. Acta Physica Sinica, 2010, 59(11): 7961-7965. doi: 10.7498/aps.59.7961
    [17] Jiang Xue-Fan, Luo Li-Jin, Jiang Qing, Zhong Chong-Gui, Tan Zhi-Zhong, Quan Hong-Rui. First-principle prediction of magnetic shape memory effect of Heusler alloy Mn2NiGe. Acta Physica Sinica, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [18] Wang Na, Tang Bi-Yu. Structural,elastic and electronic properties of L12 aluminum phases from first principles calculation. Acta Physica Sinica, 2009, 58(13): 230-S234. doi: 10.7498/aps.58.230
    [19] Zhang Guo-Ying, Zhang Hui, Wei Dan, Luo Zhi-Cheng, Li Yu-Cai. The mechanism of the influence of Bi(or Sb) and rare earth on high temperature performance of AZ91 magnesium alloy. Acta Physica Sinica, 2009, 58(1): 444-449. doi: 10.7498/aps.58.444
    [20] Zhu Jian-Xin, Li Yong-Hua, Meng Fan-Ling, Liu Chang-Sheng, Zheng Wei-Tao, Wang Yu-Ming. A first principles investigation on NiTi alloy. Acta Physica Sinica, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
Metrics
  • Abstract views:  4939
  • PDF Downloads:  195
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2017
  • Accepted Date:  01 May 2017
  • Published Online:  05 August 2017

/

返回文章
返回