Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ion irradiation of metallic glasses

Bian Xi-Lei Wang Gang

Citation:

Ion irradiation of metallic glasses

Bian Xi-Lei, Wang Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Metallic glasses (MGs), as new disordered materials prepared by rapidly quenching melted alloys, have attracted tremendous attention in the material science community. Due to their long-ranged disorderd and short-ranged ordered structures, MGs usually exhibit uniquely physical, chemical and mechanical properties, which give rise to promising applications in many fields, and especially they are expected to be potentially structural materials used in irradiation conditions, such as in nuclear reactors and aerospace.In this paper, the effects of ion irradiation on the microstructure, mechanical properties, physical, and chemical properties of MGs are reviewed. It is found that the effects of ion irradiation on the microstructures and mechanical properties depend on the ion energy as well as the composition of MG. When high energy ions interact with a solid, the collisions take place between the incident ions and atoms of the solid, which are dominated by inelastic processes (electronic stopping) and elastic processes (nuclear stopping). The inelastic processes result in the excitation and ionization of substrate atoms. In contrast, the elastic processes lead to ballistic atomic displacements. Nuclear stopping can produce structure defects and irradiation damage in glassy phase. The collisions between the incident ions and the target atoms in MGs can cause the target atoms to deviate from their original positions, and leave a large number of vacancies and interstitial atoms behind. The separations between the vacancies and the interstitial atoms form displacement cascades. The interstitial atoms with a low kinetic energy can transfer self-energies to thermal energies, resulting in a thermal spike due to the accumulation of a large quantity of the thermal energies from interstitial atoms. Such a thermal spike will cause MGs to melt and resolidify, which therefore makes the structure of glassy phase changed. Furthermore, the ion irradiation can modify the structures of MGs by introducing excessive free volumes and promoting the mobilities of atoms, which leads to the dilatation of the glassy phase and nanocrystallization. The increase of free volumes softens the MGs, and then causes the plastic deformation mechanism to transform from a heterogeneous deformation to a homogeneous deformation, which significantly enhances the plastic deformation ability.This review paper can not only improve the understanding of the relationship between microstructure evolution and macroscopic mechanical properties, and provide an experimental and fundamental basis to understand the deformation mechanism of MGs, but also summarize the performances of MGs under high dosage of ion irradiation. Moreover, it is of fundamental and practical importance for engineering applications of such advanced materials.
      Corresponding author: Wang Gang, g.wang@i.shu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB856800) and the National Natural Science Foundation of China (Grant No. 51671120).
    [1]

    Was G S 2007 Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer)

    [2]

    Williams J C, Starke E A 2003 Acta Mater. 51 5775

    [3]

    Greer A L 1995 Science 267 1947

    [4]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [5]

    Inoue A 2000 Acta Mater. 48 279

    [6]

    Ritchie R O 2011 Nat. Mater. 10 817

    [7]

    Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211

    [8]

    Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123

    [9]

    Mayr S G 2005 Phys. Rev. B 71 144109

    [10]

    Mayr S G, Averback R S 2001 Phys. Rev. Lett. 87 196106

    [11]

    Mayr S G, Ashkenazy Y, Albe K, Averback R S 2003 Phys. Rev. Lett. 90 055505

    [12]

    Klaumunzer S, Schumacher G, Rentzsch S, Vogl G 1982 Acta Metall. 30 1493

    [13]

    Luo W D, Yang B, Chen G L 2011 Scripta Mater. 64 625

    [14]

    Carter J, Fu E G, Martin M, Xie G Q, Zhang X, Wang Y Q, Wijesundera D, Wang X M, Chu W K, Shao L 2009 Scripta Mater. 61 265

    [15]

    Shao L, Gorman B P, Aitkaliyeva A, Theodore N D, Xie G Q 2012 Appl. Phys. Lett. 101 041901

    [16]

    Carter J, Fu E G, Martin M, Xie G Q, Zhang X, Wang Y Q, Wijesundera D, Wang X M, Chu W K, McDeavitt S M, Shao L 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 2827

    [17]

    Huang Y J, Fan H B, Zhou X Y, Xue P, Ning Z L, Daisenberger D, Sun J F, Shen J 2015 Scripta Mater. 103 41

    [18]

    Bian X L, Wang G, Chen H C, Yan L, Wang J G, Wang Q, Hu P F, Ren J L, Chan K C, Zheng N, Teresiak A, Gao Y L, Zhai Q J, Eckert J, Beadsworth J, Dahmen K A, Liaw P K 2016 Acta Mater. 106 66

    [19]

    Perez-Bergquist A G, Bei H B, Leonard K J, Zhang Y W, Zinkle S J 2014 Intermetallics 53 62

    [20]

    Myers M, Fu E G, Myers M, Wang H, Xie G Q, Wang X, Chu W K, Shao L 2010 Scripta Mater. 63 1045

    [21]

    Myers M, Charnvanichborikarn S, Wei C, Luo Z, Xie G, Kucheyev S, Lucca D, Shao L 2012 Scripta Mater. 67 887

    [22]

    Rizza G, Dunlop A, Jaskierowicz G, Kopcewicz G 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 226 609

    [23]

    Chen H C, Cao G Q, Liu R D, Wang G, Yan L, Zhou X T 2015 J. Appl. Phys. 118 035308

    [24]

    Kawasegia N, Morita N, Yamada N, Takano N, Oyama N, Ashida K, Taniguchi J, MiyamotoI, Momota S, Ofune H 2006 Appl. Phys. Lett. 89 143115

    [25]

    Yang Y Z, Tao P J, Li G Q, Mu Z X, Ru Q, Xie Z W, Chen X C 2009 Intermetallics 17 722

    [26]

    Qin W, Szpunar J A, Umakoshi Y 2011 Acta Mater. 59 2221

    [27]

    Thomas S, Thomas H, Avasthi D K, Tripathi A, Ramanujan R V, Anantharaman M R 2009 J. Appl. Phys. 105 033910

    [28]

    Gutzmann A, Klaumnzer S, Meier P 1995 Phys. Rev. Lett. 74 2256

    [29]

    Ridgway M C, Bierschenk T, Giulian R, Afra B, Rodriguez M D, Araujo L L, Byrne A P, Kirby N, Pakarinen O H, Djurabekova F, Nordlund K, Schleberger M, Osmani O, Medvedev N, Rethfeld B, Kluth P 2013 Phys. Rev. Lett. 110 245502

    [30]

    Xiao Q, Huang L, Shi Y 2013 J. Appl. Phys. 113 083514

    [31]

    Avchaciov K A, Ritter Y, Djurabekova F, Nordlund K, Albe K 2013 Appl. Phys. Lett. 102 181910

    [32]

    Raghavan R, Boopathy K, Ghisleni R, Pouchon M A, Ramamurty U, Michler J 2010 Scripta Mater. 62 462

    [33]

    Liu Y H, Zhao F, Li Y L, Chen M W 2012 J. Appl. Phys. 112 063504

    [34]

    Raghavan R, Kombaiah B, Döbeli M, Erni R, Ramamurty U, Michler J 2012 Mater. Sci. Eng. A 532 407

    [35]

    Magagnosc D J, Ehrbar R, Kumar G, He M R, Schroers J, Gianola D S 2013 Sci. Rep. 3 1096

    [36]

    Magagnosc D J, Kumar G, Schroers J, Felfer P, Cairney J M, Gianola D S 2014 Acta Mater. 74 165

    [37]

    Jang D, Greer J R 2010 Nat. Mater. 9 215

    [38]

    Liontas R, Gu X W, Fu E, Wang Y, Li N, Mara N, Greer J R 2014 Nano Lett. 14 5176

    [39]

    Jia H L, Muntele C I, Huang L, Li X, Li G, Zhang T, He W, Liaw P K 2013 Intermetallics 41 35

    [40]

    Jiang Q K, Qin C L, Amiya K, Nagata S, Inoue A, Zheng R T, Cheng G A, Nie X P, Jiang J Z 2008 Intermetallics 16 225

    [41]

    Menendez E, Hynowska A, Fornell J, Surinach S, Montserrat J, Temst K, Vantomme A, Baro M D, Garcia-Lecina E, Pellicer E, Sort J 2014 J. Alloys Compd. 610 118

    [42]

    Okunev V D, Samoilenko Z A, Szewczyk A, Szymczak R, Szymczak H, Lewandowski S J, Aleshkevych P, Więckowski J, Khmelevskaya V S, Antoshina I A 2011 J. Phys. Condens. Matter 23 415702

  • [1]

    Was G S 2007 Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer)

    [2]

    Williams J C, Starke E A 2003 Acta Mater. 51 5775

    [3]

    Greer A L 1995 Science 267 1947

    [4]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [5]

    Inoue A 2000 Acta Mater. 48 279

    [6]

    Ritchie R O 2011 Nat. Mater. 10 817

    [7]

    Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211

    [8]

    Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123

    [9]

    Mayr S G 2005 Phys. Rev. B 71 144109

    [10]

    Mayr S G, Averback R S 2001 Phys. Rev. Lett. 87 196106

    [11]

    Mayr S G, Ashkenazy Y, Albe K, Averback R S 2003 Phys. Rev. Lett. 90 055505

    [12]

    Klaumunzer S, Schumacher G, Rentzsch S, Vogl G 1982 Acta Metall. 30 1493

    [13]

    Luo W D, Yang B, Chen G L 2011 Scripta Mater. 64 625

    [14]

    Carter J, Fu E G, Martin M, Xie G Q, Zhang X, Wang Y Q, Wijesundera D, Wang X M, Chu W K, Shao L 2009 Scripta Mater. 61 265

    [15]

    Shao L, Gorman B P, Aitkaliyeva A, Theodore N D, Xie G Q 2012 Appl. Phys. Lett. 101 041901

    [16]

    Carter J, Fu E G, Martin M, Xie G Q, Zhang X, Wang Y Q, Wijesundera D, Wang X M, Chu W K, McDeavitt S M, Shao L 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 2827

    [17]

    Huang Y J, Fan H B, Zhou X Y, Xue P, Ning Z L, Daisenberger D, Sun J F, Shen J 2015 Scripta Mater. 103 41

    [18]

    Bian X L, Wang G, Chen H C, Yan L, Wang J G, Wang Q, Hu P F, Ren J L, Chan K C, Zheng N, Teresiak A, Gao Y L, Zhai Q J, Eckert J, Beadsworth J, Dahmen K A, Liaw P K 2016 Acta Mater. 106 66

    [19]

    Perez-Bergquist A G, Bei H B, Leonard K J, Zhang Y W, Zinkle S J 2014 Intermetallics 53 62

    [20]

    Myers M, Fu E G, Myers M, Wang H, Xie G Q, Wang X, Chu W K, Shao L 2010 Scripta Mater. 63 1045

    [21]

    Myers M, Charnvanichborikarn S, Wei C, Luo Z, Xie G, Kucheyev S, Lucca D, Shao L 2012 Scripta Mater. 67 887

    [22]

    Rizza G, Dunlop A, Jaskierowicz G, Kopcewicz G 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 226 609

    [23]

    Chen H C, Cao G Q, Liu R D, Wang G, Yan L, Zhou X T 2015 J. Appl. Phys. 118 035308

    [24]

    Kawasegia N, Morita N, Yamada N, Takano N, Oyama N, Ashida K, Taniguchi J, MiyamotoI, Momota S, Ofune H 2006 Appl. Phys. Lett. 89 143115

    [25]

    Yang Y Z, Tao P J, Li G Q, Mu Z X, Ru Q, Xie Z W, Chen X C 2009 Intermetallics 17 722

    [26]

    Qin W, Szpunar J A, Umakoshi Y 2011 Acta Mater. 59 2221

    [27]

    Thomas S, Thomas H, Avasthi D K, Tripathi A, Ramanujan R V, Anantharaman M R 2009 J. Appl. Phys. 105 033910

    [28]

    Gutzmann A, Klaumnzer S, Meier P 1995 Phys. Rev. Lett. 74 2256

    [29]

    Ridgway M C, Bierschenk T, Giulian R, Afra B, Rodriguez M D, Araujo L L, Byrne A P, Kirby N, Pakarinen O H, Djurabekova F, Nordlund K, Schleberger M, Osmani O, Medvedev N, Rethfeld B, Kluth P 2013 Phys. Rev. Lett. 110 245502

    [30]

    Xiao Q, Huang L, Shi Y 2013 J. Appl. Phys. 113 083514

    [31]

    Avchaciov K A, Ritter Y, Djurabekova F, Nordlund K, Albe K 2013 Appl. Phys. Lett. 102 181910

    [32]

    Raghavan R, Boopathy K, Ghisleni R, Pouchon M A, Ramamurty U, Michler J 2010 Scripta Mater. 62 462

    [33]

    Liu Y H, Zhao F, Li Y L, Chen M W 2012 J. Appl. Phys. 112 063504

    [34]

    Raghavan R, Kombaiah B, Döbeli M, Erni R, Ramamurty U, Michler J 2012 Mater. Sci. Eng. A 532 407

    [35]

    Magagnosc D J, Ehrbar R, Kumar G, He M R, Schroers J, Gianola D S 2013 Sci. Rep. 3 1096

    [36]

    Magagnosc D J, Kumar G, Schroers J, Felfer P, Cairney J M, Gianola D S 2014 Acta Mater. 74 165

    [37]

    Jang D, Greer J R 2010 Nat. Mater. 9 215

    [38]

    Liontas R, Gu X W, Fu E, Wang Y, Li N, Mara N, Greer J R 2014 Nano Lett. 14 5176

    [39]

    Jia H L, Muntele C I, Huang L, Li X, Li G, Zhang T, He W, Liaw P K 2013 Intermetallics 41 35

    [40]

    Jiang Q K, Qin C L, Amiya K, Nagata S, Inoue A, Zheng R T, Cheng G A, Nie X P, Jiang J Z 2008 Intermetallics 16 225

    [41]

    Menendez E, Hynowska A, Fornell J, Surinach S, Montserrat J, Temst K, Vantomme A, Baro M D, Garcia-Lecina E, Pellicer E, Sort J 2014 J. Alloys Compd. 610 118

    [42]

    Okunev V D, Samoilenko Z A, Szewczyk A, Szymczak R, Szymczak H, Lewandowski S J, Aleshkevych P, Więckowski J, Khmelevskaya V S, Antoshina I A 2011 J. Phys. Condens. Matter 23 415702

  • [1] Zhang Jian, Hao Qi, Zhang Lang-Ting, Qiao Ji-Chao. Probing microstructural heterogeneity of La-based amorphous alloy under versatile mechanical stimuli. Acta Physica Sinica, 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [2] Chen Jing-Jing, Qiu Xiao-Lin, Li Ke, Zhou Dan, Yuan Jun-Jun. Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method. Acta Physica Sinica, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [3] He Xiao-Xun, Li Bing-Sheng, Liu Rui, Zhang Tong-Min, Cao Xing-Zhong, Chen Li-Ming, Xu Shuai. Effect of Ti content on preparation and properties of TiB2-SiC-Ti materials. Acta Physica Sinica, 2022, 71(19): 192801. doi: 10.7498/aps.71.20220530
    [4] Chen Bo, Yang Zhan-Zhan, Wang Yu-Ying, Wang Yin-Gang. Effects of annealing time on nanoscale structural heterogeneity and magnetic properties of Fe80Si9B10Cu1 amorphous alloy. Acta Physica Sinica, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [5] Zhang Na, Liu Bo, Lin Li-Wei. Effect of He ion irradiation on microstructure and electrical properties of graphene. Acta Physica Sinica, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [6] Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [7] Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin, Shen Wei-Zu. Effect of proton irradiation on microstructure evolution of permanent magnet. Acta Physica Sinica, 2018, 67(1): 016104. doi: 10.7498/aps.67.20172025
    [8] Ren Jing-Li, Yu Li-Ping, Zhang Li-Ying. Critical phenomena in amorphous materials. Acta Physica Sinica, 2017, 66(17): 176401. doi: 10.7498/aps.66.176401
    [9] Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [10] Li Li-Li, Zhang Xiao-Hong, Wang Yu-Long, Guo Jia-Hui, Zhang Shuang. Simulation of mechanical properties based on microstructure in polyethylene/montmorillonite nanocomposites. Acta Physica Sinica, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [11] Ma Bing-Yang, Zhang An-Ming, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Amorphizing and mechanical properties of co-sputtered Al-Zr alloy films. Acta Physica Sinica, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [12] Yu Li-Hua, Ma Bing-Yang, Cao Jun, Xu Jun-Hua. Structures, mechanical and tribological properties of (Zr,V)N composite films. Acta Physica Sinica, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [13] Tang Jie, Yang Li-Rong, Wang Xiao-Jun, Zhang Lin, Wei Cheng-Fu, Chen Bo-Wei, Mei Yang. Effects of high pressure on microstructure and properties of bulk (PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x alloys. Acta Physica Sinica, 2012, 61(24): 240701. doi: 10.7498/aps.61.240701
    [14] Wang Ying, Lu Tie-Cheng, Wang Yue-Zhong, Yue Shun-Li, Qi Jian-Qi, Pan Lei. Investigation of the electronic and mechanical properties of Al2O3-AlN solid solution by virtual crystal approximation. Acta Physica Sinica, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [15] Luo Qing-Hong, Lu Yong-Hao, Lou Yan-Zhi. Microstructure and mechanical properties of Ti-B-C-N nanocomposite coatings. Acta Physica Sinica, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [16] Luo Qing-Hong, Lou Yan-Zhi, Zhao Zhen-Ye, Yang Hui-Sheng. Effect of annealing on microstructure and mechanical propertiesof AlTiN multilayer coatings. Acta Physica Sinica, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [17] Li Xiu-Mei, Liu Tao, Guo Zhao-Hui, Zhu Ming-Gang, Li Wei. Effects of rare earth content on microstructure and magnetic properties of (Nd,Dy)-(Fe,Al)-B alloys. Acta Physica Sinica, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [18] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [19] Zheng Li-Jing, Li Shu-Suo, Li Huan-Xi, Chen Chang-Qi, Han Ya-Fang, Dong Bao-Zhong. Small angle x-ray scattering study on microstructure and mechanical property evo lutions of equal-channel angular pressed 7050 Al alloy. Acta Physica Sinica, 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
    [20] Li Teng, Li Wei, Pan Wei, Li Xiu-Mei. Effect of microstructure on the mechanical properties of Fe45—50 Cr30—35Co20—25Mo0—4Zr0—2 alloy. Acta Physica Sinica, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
Metrics
  • Abstract views:  7030
  • PDF Downloads:  477
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2017
  • Accepted Date:  26 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回