Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of surface passivation on the electronic properties of GaAs nanowire:A first-principle study

Zhang Yong Shi Yi-Min Bao You-Zhen Yu Xia Xie Zhong-Xiang Ning Feng

Citation:

Effect of surface passivation on the electronic properties of GaAs nanowire:A first-principle study

Zhang Yong, Shi Yi-Min, Bao You-Zhen, Yu Xia, Xie Zhong-Xiang, Ning Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Crystal structures of GaAs nanowires prepared by employing molecular beam epitaxy technique are often dominated by the wurtzite (WZ) phase.Recently,Galicka et al.found that the WZ GaAs nanowires grown along the[0001]direction in smaller size are energetically more favorable than other nanowires with the zinc blende phase grown along a specific direction (2008 J.Phys.:Condens.Matter 20 454226).The native nanowire usually has abundant unsaturated surface dangling bonds (SDBs) inducing significant surface states,leading to electrons accumulating at the nanowire surface. Thus the electrical property of the nanowire is very sensitive to the surface condition.However,surface passivation can effectively remove the surface states from the SDBs,and optimize the device performance.In this paper,using the first-principle calculations in combination with density function theory,we investigate the effect of surface passivation on the electronic structure of the GaAs nanowires grown along the[0001]direction.Various passivation species (hydrogen (H),fluorine (F),chlorine (Cl) and bromine (Br)) with different coverage ratios are considered.The GaAs nanowires hydrogenated with different locations and coverage ratios display different electronic properties.It is found that the GaAs native nanowire with a smaller diameter shows a semiconductor characteristic with indirect band gap,which originates from the fact that at smaller diameter,the surface stress becomes more remarkable,and then leads to surface atomic reconstruction.After passivation,the indirect band gap is translated into the direct band gap.For the GaAs nanowire with an As SDB hydrogenated,one deep donor level is located in the gap,and its band structure shows an n-type characteristic.For the GaAs nanowire with a Ga SDB hydrogenated,one shallow acceptor level is located in the gap,and its band structure shows a p-type characteristic.For the GaAs nanowire with a Ga-As dimer hydrogenated, its band structure shows an intrinsic semiconductor characteristic.For the GaAs nanowire with all of the Ga SDBs hydrogenated,the band structure shows a metallic characteristic.The band gap of the GaAs nanowire gradually increases as the hydrogen passivation ratio increases.For 50% hydrogen passivation,the band gap for the symmetrical passivation is slightly bigger than that for the half-side passivation.For the F-,Cl-and Br-passivation,the band gap decreases compared with for H-passivation.This is due to the fact that the ability of passivating atoms to compensate for surface atoms is weak,thereby reducing the band gap.The mechanism for the surface passivation is the suppression of surface states by the ability of the passivating atoms to compensate for surface atoms.These results show that the electronic properties of GaAs nanowires can be modulated by surface passivation,which is helpful for using GaAs nanowires as components and interconnections of nanoscale devices.
      Corresponding author: Zhang Yong, zhangyonghg@163.com;xiezxhu@163.com ; Xie Zhong-Xiang, zhangyonghg@163.com;xiezxhu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704112, 11547197, 61640405, 61704036), the Hunan Provincial Nature Science Foundation of China (Grant Nos. 2017JJ3051, 2017JJ2062), the Program of Hunan Provincial Education Department of China (Grant Nos. 17B066, 17B065, 16A052), by the Science and Technology Planning Project of Hengyang, China (Grant No. 2016KJ14), the Student Innovation Training Program of Hunan Institute of Technology, China (Grant No. HX1608), and the Program of Student Research and Innovation Experiment of Hunan, China.
    [1]

    Li L, Pan D, Xue Y, Wang X, Lin M, Su D, Zhang Q, Yu X, So H, Wei D, Sun B, Tan P, Pan A, Zhao J 2017 Nano Lett. 17 622

    [2]

    Ji X, Yang X, Du W, Pan H, Yang T 2016 Nano Lett. 16 7580

    [3]

    Liu Y Y, Zhou W X, Chen K Q 2015 Sci. Pep. 5 17525

    [4]

    Zhang Y, Tang L M, Ning F, Wang D, Chen K Q 2015 J. Appl. Phys. 117 125707

    [5]

    Li L M, Ning F, Tang L M 2015 Acta Phys. Sin. 64 227303 (in Chinese)[李立明, 宁锋, 唐黎明 2015 物理学报 64 227303]

    [6]

    Zhang W, Han W H, Zhao X S, L Q F, Ji X H, Yang T, Yang F H 2017 Chin. Phys. B 26 088101

    [7]

    Li S, Huang G Y, Guo J K, Kang N, Caroff P, Xu H Q 2017 Chin. Phys. B 26 027305

    [8]

    Yang Y K, Yang T F, Li H L, Qi Z Y, Chen X L, Wu W Q, Hu X L, He P B, Jiang Y, Hu W, Zhang Q L, Zhuang X J, Zhu X L, Pan A L 2017 Chin. Phys. B 25 118106

    [9]

    Zhang C H, Xiang G, Lan M, Zhang X 2014 Chin. Phys. B 23 096103

    [10]

    Zhang Y, Xie Z X, Deng Y X, Yu X, Li K M 2015 Chin. Phys. B 24 126302

    [11]

    Krogstrup P, Popovitz-Biro R, Johnson E, Madsen M H, Nyg\aard J, Shtrikman H 2010 Nano Lett. 10 4475

    [12]

    Ihn S G, Song J I, Kim Y H, Lee J Y 2006 Appl. Phys. Lett. 89 053106

    [13]

    Bao X Y, Soci C, Susac D, Bratvold J, Aplin D P R, Wei W, Chen C Y, Dayeh S A, Kavanagh K L, Wang D L 2008 Nano Lett. 8 3755

    [14]

    Han N, Wang F Y, Hou J J, Xiu F, Yip S, Hui A T, Huang T, Ho J C 2012 ACS Nano 6 4428

    [15]

    Prechtel L, Padilla M, Erhard N, Karl H, Abstreiter G, Morral A F L, Holleitner A W 2012 Nano Lett. 8 2337

    [16]

    Hu S, Chi C Y, Fountaine K T, Yao M Q, Atwater H A, Dapkus P D, Lewis N S, Zhou C W 2013 Energy Environ. Sci. 6 1879

    [17]

    Soci C, Bao X Y, Aplin D P R, Wang D L A 2008 Nano Lett. 8 4275

    [18]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89

    [19]

    Persson A I, Larsson M W, Stenstrm S, Ohlsson B J, Samuelson L, Wallenberg L R 2004 Nat. Mater. 3 677

    [20]

    Plante M C, Lapierre R R 2008 J. Cryst. Growth 310 365

    [21]

    Han N, Hou J J, Wang F Y, Yip S, Lin H, Fang M, Xiu F, Shi X L, Huang T, Ho J C 2012 Nano. Res. Lett. 7 632

    [22]

    Khanal D R, Yim J W L, Walukiewicz W, Wu J 2007 Nano Lett. 7 1186

    [23]

    Varadhan P, Fu H C, Priante D, Retamal J R D, Zhao C, Ebaid M, Ng T K, Ajia I, Mitra S, Roqan I S, Ooi B S, He J H 2017 Nano Lett. 17 1520

    [24]

    Shtrom I V, Bouravleuv A D, Samsonenko Y B, Khrebtov A I, Soshnikov I P, Reznik R R, Cirlin G E, Dhaka V, Perros A, Lipsanen H 2016 Semiconductors 50 1619

    [25]

    Zhang Y, Xie Z X, Deng Y X, Yu X 2015 Phys. Lett. A 379 2745

    [26]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 16

    [27]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [30]

    Shu H B, Chen X S, Ding Z L, Dong R B, Lu W 2011 J. Phys. Chem. C 115 14449

  • [1]

    Li L, Pan D, Xue Y, Wang X, Lin M, Su D, Zhang Q, Yu X, So H, Wei D, Sun B, Tan P, Pan A, Zhao J 2017 Nano Lett. 17 622

    [2]

    Ji X, Yang X, Du W, Pan H, Yang T 2016 Nano Lett. 16 7580

    [3]

    Liu Y Y, Zhou W X, Chen K Q 2015 Sci. Pep. 5 17525

    [4]

    Zhang Y, Tang L M, Ning F, Wang D, Chen K Q 2015 J. Appl. Phys. 117 125707

    [5]

    Li L M, Ning F, Tang L M 2015 Acta Phys. Sin. 64 227303 (in Chinese)[李立明, 宁锋, 唐黎明 2015 物理学报 64 227303]

    [6]

    Zhang W, Han W H, Zhao X S, L Q F, Ji X H, Yang T, Yang F H 2017 Chin. Phys. B 26 088101

    [7]

    Li S, Huang G Y, Guo J K, Kang N, Caroff P, Xu H Q 2017 Chin. Phys. B 26 027305

    [8]

    Yang Y K, Yang T F, Li H L, Qi Z Y, Chen X L, Wu W Q, Hu X L, He P B, Jiang Y, Hu W, Zhang Q L, Zhuang X J, Zhu X L, Pan A L 2017 Chin. Phys. B 25 118106

    [9]

    Zhang C H, Xiang G, Lan M, Zhang X 2014 Chin. Phys. B 23 096103

    [10]

    Zhang Y, Xie Z X, Deng Y X, Yu X, Li K M 2015 Chin. Phys. B 24 126302

    [11]

    Krogstrup P, Popovitz-Biro R, Johnson E, Madsen M H, Nyg\aard J, Shtrikman H 2010 Nano Lett. 10 4475

    [12]

    Ihn S G, Song J I, Kim Y H, Lee J Y 2006 Appl. Phys. Lett. 89 053106

    [13]

    Bao X Y, Soci C, Susac D, Bratvold J, Aplin D P R, Wei W, Chen C Y, Dayeh S A, Kavanagh K L, Wang D L 2008 Nano Lett. 8 3755

    [14]

    Han N, Wang F Y, Hou J J, Xiu F, Yip S, Hui A T, Huang T, Ho J C 2012 ACS Nano 6 4428

    [15]

    Prechtel L, Padilla M, Erhard N, Karl H, Abstreiter G, Morral A F L, Holleitner A W 2012 Nano Lett. 8 2337

    [16]

    Hu S, Chi C Y, Fountaine K T, Yao M Q, Atwater H A, Dapkus P D, Lewis N S, Zhou C W 2013 Energy Environ. Sci. 6 1879

    [17]

    Soci C, Bao X Y, Aplin D P R, Wang D L A 2008 Nano Lett. 8 4275

    [18]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89

    [19]

    Persson A I, Larsson M W, Stenstrm S, Ohlsson B J, Samuelson L, Wallenberg L R 2004 Nat. Mater. 3 677

    [20]

    Plante M C, Lapierre R R 2008 J. Cryst. Growth 310 365

    [21]

    Han N, Hou J J, Wang F Y, Yip S, Lin H, Fang M, Xiu F, Shi X L, Huang T, Ho J C 2012 Nano. Res. Lett. 7 632

    [22]

    Khanal D R, Yim J W L, Walukiewicz W, Wu J 2007 Nano Lett. 7 1186

    [23]

    Varadhan P, Fu H C, Priante D, Retamal J R D, Zhao C, Ebaid M, Ng T K, Ajia I, Mitra S, Roqan I S, Ooi B S, He J H 2017 Nano Lett. 17 1520

    [24]

    Shtrom I V, Bouravleuv A D, Samsonenko Y B, Khrebtov A I, Soshnikov I P, Reznik R R, Cirlin G E, Dhaka V, Perros A, Lipsanen H 2016 Semiconductors 50 1619

    [25]

    Zhang Y, Xie Z X, Deng Y X, Yu X 2015 Phys. Lett. A 379 2745

    [26]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 16

    [27]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [30]

    Shu H B, Chen X S, Ding Z L, Dong R B, Lu W 2011 J. Phys. Chem. C 115 14449

  • [1] Dong Dian-Meng, Wang Cheng, Zhang Qing-Yi, Zhang Tao, Yang Yong-Tao, Xia Han-Chi, Wang Yue-Hui, Wu Zhen-Ping. Ga2O3-based metal-insulator-semiconductor solar-blind ultraviolet photodetector with HfO2 inserting layer. Acta Physica Sinica, 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [2] Kang Yu-Bin, Tang Ji-Long, Li Ke-Xue, Li Xiang, Hou Xiao-Bing, Chu Xue-Ying, Lin Feng-Yuan, Wang Xiao-Hua, Wei Zhi-Peng. Studies of Be, Si doping regulated GaAs nanowires for phase transition and optical properties. Acta Physica Sinica, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [3] Wang Peng-Hua, Tang Ji-Long, Kang Yu-Bin, Fang Xuan, Fang Dan, Wang Deng-Kui, Lin Feng-Yuan, Wang Xiao-Hua, Wei Zhi-Peng. Crystal structure and optical properties of GaAs nanowires. Acta Physica Sinica, 2019, 68(8): 087803. doi: 10.7498/aps.68.20182116
    [4] Yang Wen, Song Jian-Jun, Ren Yuan, Zhang He-Ming. Band structure model of modified Ge for optical device application. Acta Physica Sinica, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [5] Yuan Hui-Bo, Li Lin, Zeng Li-Na, Zhang Jing, Li Zai-Jin, Qu Yi, Yang Xiao-Tian, Chi Yao-Dan, Ma Xiao-Hui, Liu Guo-Jun. Morphology characterization and growth mechanism of Au-catalyzed GaAs and GaAs/InGaAs nanowires. Acta Physica Sinica, 2018, 67(18): 188101. doi: 10.7498/aps.67.20180220
    [6] Liu Xue-Lu, Wu Jiang-Bin, Luo Xiang-Dong, Tan Ping-Heng. Dual-modulated photoreflectance spectra of semi-insulating GaAs. Acta Physica Sinica, 2017, 66(14): 147801. doi: 10.7498/aps.66.147801
    [7] Tan Man-Lin, Zhou Dan-Dan, Fu Dong-Ju, Zhang Wei-Li, Ma Qing, Li Dong-Shuang, Chen Jian-Jun, Zhang Hua-Yu, Wang Gen-Ping. Performance investigation of black silicon solar cells with surface passivated by BiFeO3/ITO composite film. Acta Physica Sinica, 2017, 66(16): 167701. doi: 10.7498/aps.66.167701
    [8] Li Li-Ming, Ning Feng, Tang Li-Ming. First-principles study of effects of quantum confinement and strain on the electronic properties of GaSb nanowires. Acta Physica Sinica, 2015, 64(22): 227303. doi: 10.7498/aps.64.227303
    [9] Cui Jian-Gong, Zhang Xia, Yan Xin, Li Jun-Shuai, Huang Yong-Qing, Ren Xiao-Min. Selective-area growth of GaAs and GaAs/InxGa1-xAs/GaAs nanowires by MOCVD. Acta Physica Sinica, 2014, 63(13): 136103. doi: 10.7498/aps.63.136103
    [10] Zhang Xiao-Qing, He Hao, Hu Ming-Lie, Yan Xin, Zhang Xia, Ren Xiao-Min, Wang Qing-Yue. Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses. Acta Physica Sinica, 2013, 62(7): 076102. doi: 10.7498/aps.62.076102
    [11] Jin Feng, Zhang Zhen-Hua, Wang Cheng-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Twisting effects on energy band structures and transmission behaviors of graphene nanoribbons. Acta Physica Sinica, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [12] Sun Wei-Feng, Zheng Xiao-Xia. First-principles study of (InAs)1/(GaSb)1 superlattice nanowires. Acta Physica Sinica, 2012, 61(11): 117103. doi: 10.7498/aps.61.117103
    [13] He Yue, Dou Ya-Nan, Ma Xiao-Guang, Chen Shao-Bin, Chu Jun-Hao. Passivation and stability of thermal atomic layer deposited Al2O3 on CZ-Si. Acta Physica Sinica, 2012, 61(24): 248102. doi: 10.7498/aps.61.248102
    [14] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [15] Sun Wei-Feng, Li Mei-Cheng, Zhao Lian-Cheng. Phonon band structure and electron-phonon interactions in Ga and Sb nanowires: a first-principles study. Acta Physica Sinica, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [16] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi. Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes. Acta Physica Sinica, 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [17] Chen De-Yan, Lü Tie-Yu, Huang Mei-Chun. GW quasiparticle band structure of BaSe. Acta Physica Sinica, 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [18] Yu Wei, Zhang Li, Wang Bao-Zhu, Lu Wan-Bing, Wang Li-Wei, Fu Guang-Sheng. Hydrogen bonding configurations and energy band structures of hydrogenated nanocrystalline silicon films. Acta Physica Sinica, 2006, 55(4): 1936-1941. doi: 10.7498/aps.55.1936
    [19] Zhang Yong-Fan, Ding Kai-Ning, Lin Wei, Li Jun-Qian. A first principle study on the geometry and the electronic structures of VC(001) relaxed surface. Acta Physica Sinica, 2005, 54(3): 1352-1360. doi: 10.7498/aps.54.1352
    [20] Liang Jun-Wu, Hu Hui-Fang, Wei Jian-Wei, Peng Ping. Effects of oxygen adsorption on the electronic structure and optical properties of single-wall carbon nanotubes. Acta Physica Sinica, 2005, 54(6): 2877-2882. doi: 10.7498/aps.54.2877
Metrics
  • Abstract views:  5539
  • PDF Downloads:  189
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2017
  • Accepted Date:  04 July 2017
  • Published Online:  05 October 2017

/

返回文章
返回