Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Li1.4Al0.4Ti1.6(PO4)3 high lithium ion conducting solid electrolyte prepared by tape casting and modified with epoxy resin

Chen Qi Shang Xue-Fu Zhang Peng Xu Peng Wang Miao Nobuyuki Imanishi

Citation:

Li1.4Al0.4Ti1.6(PO4)3 high lithium ion conducting solid electrolyte prepared by tape casting and modified with epoxy resin

Chen Qi, Shang Xue-Fu, Zhang Peng, Xu Peng, Wang Miao, Nobuyuki Imanishi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The Li1.4Al0.4Ti1.6(PO4)3(LATP) nanocrystal powder is synthesized by citric acid assisted sol-gel method.The LATP powder is crystalized at 850℃ for 4 h,and the X-ray diffraction patterns show that the NASICON structure is obtained without any impurity phase.The LATP films are prepared by tape casting method through using as-synthesized LATP powder and subsequently recrystalized at various temperatures for 5 h.The impedance spectra of LATP film recrystalized at various temperatures indicate that the film sintered at 950℃ has the highest lithium ionic conductivity. Meanwhile,it is demonstrated that no impurity exists in LATP film recrystalizated at 950℃,and its lattice parameters are a=b=8.50236 Å and c=20.82379 Å.The high-purity LATP-epoxy films are prepared by modification with epoxy resin.The water permeation test proves that the LATP-epoxy film can prevent water from penetrating for 15 d,which indicates that epoxy resin fills the holes in LATP film.The fracture surface topography of LATP-epoxy film shows its dense structure with grain sizes from nano-scale to micro-scale.The energy dispersive X-ray spectrometer mapping of the fracture of LATP-epoxy film indicates that the carbon elements are uniformly distributed in grain boundary,which means that epoxy resin is soaked into LATP film.The relative density of 89.5% is obtained for LATP film,which is increased to 93.0% for LATP-epoxy (the nominal density is around 2.9624 g/cm3).The difference in relative density between LATP film and LATP-epoxy film indicates that the epoxy resin is immersed in LATP film already.The total,bulk,and grain boundary lithium ionic conductivities for the LATP film at 25℃ are 8.70×10-4 S·cm-1,2.63×10-3 S·cm-1 and 1.30×10-3 S·cm-1,respectively.The total,bulk,and grain boundary lithium ionic conductivities for the LATP-epoxy film at 25℃ are 3.35×10-4 S·cm-1,1.84×10-3 S·cm-1 and 4.09×10-4 S·cm-1,respectively.The decrease in the total conductivity of the LATP-epoxy film may be caused by the increase in its grain boundary resistance and its exposure to the atmosphere during modification with epoxy resin.The high lithium ionic conductivity for both LATP film and LATP-epoxy contributes to homogeneous mixture at sol-gel process and the decreasing of grain boundary impedance for this special structure.The activation energies for LATP film and LATP-epoxy film are 0.36 eV and 0.34 eV,respectively, based on Arrhenius equation.The water-impermeable high lithium ion conducting solid electrolyte of LATP modified with epoxy resin is likely to be used as protective film for lithium metal electrode of novel high energy density batteries.
      Corresponding author: Wang Miao, miaowang@css.zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471317).
    [1]

    Armand M, Tarascon J M 2008 Nature 451 652

    [2]

    Abraham K M, Jiang Z 1996 J. Electrochem. Soc. 143 1

    [3]

    Peled E, Sternberg Y, Gorenshtein A, Lavi Y 1989 J. Electrochem. Soc 136 1621

    [4]

    Bates J B, Dudney N J, Lubben D C, Gruzalski G R, Kwak B S, Yu X H, Zuhr R A 1995 J. Power Sources 54 58

    [5]

    Assary R S, Lu J, Du P, Luo X Y, Zhang X Y, Ren Y, Curtiss L A, Amine K 2013 ChemSusChem 6 51

    [6]

    Shui J L, Okasinski J S, Kenesei P, Dobbs H A, Zhao D, Almer J D, Liu D J 2013 Nat. Commun. 4 2255

    [7]

    Mikhaylik Y V, Akridge J R 2004 J. Electrochem. Soc. 151 A1969

    [8]

    Zhang T, Imanishi N, Shimonishi Y, Hirano A, Takeda Y, Yamamoto O, Sammes N 2010 Chem. Commun. 46 1661

    [9]

    Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M 2012 Nat. Mater. 11 19

    [10]

    Aleshin G Y, Semenenko D A, Belova A I, Zakharchenko T K, Itkis D M, Goodilin E A, Tretyakov Y D 2011 Solid State Ionics 184 62

    [11]

    McCloskey B D 2015 J. Phys. Chem. Lett. 6 4581

    [12]

    Lim H D, Song H, Kim J, Gwon H, Bae Y, Park K Y, Hong J, Kim H, Kim T, Kim Y H, Lepró X, Ovalle-Robles R, Baughman R H, Kang K 2014 Angew. Chem. Int. Ed. 53 3926

    [13]

    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G 1990 J. Electrochem. Soc. 137 1023

    [14]

    Fu J 1997 Solid State Ionics 96 195

    [15]

    Arbi K, Mandal S, Rojo J M, Sanz J 2002 Chem. Mater. 14 1091

    [16]

    Xu X X, Wen Z Y, Wu J G, Yang X L 2007 Solid State Ionics 178 29

    [17]

    Kosova N V, Devyatkina E T, Stepanov A P, Buzlukov A L 2008 Ionics 14 303

    [18]

    Huang L Z, Wen Z Y, Wu M F, Wu X W, Liu Y, Wang X Y 2011 J. Power Sources 196 6943

    [19]

    Takahashi K, Ohmura J, Im D, Lee D J, Zhang T, Imanishi N, Hirano A, Phillipps M B, Takeda Y, Yamamoto O 2012 J. Electrochem. Soc. 159 A342

    [20]

    Zhang M, Huang Z, Cheng J F, Yamamoto O, Imanishi N, Chi B, Pu J, Li J 2014 J. Alloys Comp. 590 147

    [21]

    Zhang P, Wang H, Lee Y G, Matsui M, Takeda Y, Yamamoto O, Imanishi N 2015 J. Electrochem. Soc. 162 A1265

    [22]

    Aatiq A, Ménétrier M, Croguennec L, Suardc E, Delmas C 2002 J. Mater. Chem. 12 2971

    [23]

    Takahashi K, Johnson P, Imanishi N, Sammes N, Takeda Y, Yamamoto O 2012 J. Electrochem. Soc. 159 A1065

    [24]

    Bruce P G 1997 Solid State Electrochemistry (Cambridge:Cambridge University Press) p54

  • [1]

    Armand M, Tarascon J M 2008 Nature 451 652

    [2]

    Abraham K M, Jiang Z 1996 J. Electrochem. Soc. 143 1

    [3]

    Peled E, Sternberg Y, Gorenshtein A, Lavi Y 1989 J. Electrochem. Soc 136 1621

    [4]

    Bates J B, Dudney N J, Lubben D C, Gruzalski G R, Kwak B S, Yu X H, Zuhr R A 1995 J. Power Sources 54 58

    [5]

    Assary R S, Lu J, Du P, Luo X Y, Zhang X Y, Ren Y, Curtiss L A, Amine K 2013 ChemSusChem 6 51

    [6]

    Shui J L, Okasinski J S, Kenesei P, Dobbs H A, Zhao D, Almer J D, Liu D J 2013 Nat. Commun. 4 2255

    [7]

    Mikhaylik Y V, Akridge J R 2004 J. Electrochem. Soc. 151 A1969

    [8]

    Zhang T, Imanishi N, Shimonishi Y, Hirano A, Takeda Y, Yamamoto O, Sammes N 2010 Chem. Commun. 46 1661

    [9]

    Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M 2012 Nat. Mater. 11 19

    [10]

    Aleshin G Y, Semenenko D A, Belova A I, Zakharchenko T K, Itkis D M, Goodilin E A, Tretyakov Y D 2011 Solid State Ionics 184 62

    [11]

    McCloskey B D 2015 J. Phys. Chem. Lett. 6 4581

    [12]

    Lim H D, Song H, Kim J, Gwon H, Bae Y, Park K Y, Hong J, Kim H, Kim T, Kim Y H, Lepró X, Ovalle-Robles R, Baughman R H, Kang K 2014 Angew. Chem. Int. Ed. 53 3926

    [13]

    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G 1990 J. Electrochem. Soc. 137 1023

    [14]

    Fu J 1997 Solid State Ionics 96 195

    [15]

    Arbi K, Mandal S, Rojo J M, Sanz J 2002 Chem. Mater. 14 1091

    [16]

    Xu X X, Wen Z Y, Wu J G, Yang X L 2007 Solid State Ionics 178 29

    [17]

    Kosova N V, Devyatkina E T, Stepanov A P, Buzlukov A L 2008 Ionics 14 303

    [18]

    Huang L Z, Wen Z Y, Wu M F, Wu X W, Liu Y, Wang X Y 2011 J. Power Sources 196 6943

    [19]

    Takahashi K, Ohmura J, Im D, Lee D J, Zhang T, Imanishi N, Hirano A, Phillipps M B, Takeda Y, Yamamoto O 2012 J. Electrochem. Soc. 159 A342

    [20]

    Zhang M, Huang Z, Cheng J F, Yamamoto O, Imanishi N, Chi B, Pu J, Li J 2014 J. Alloys Comp. 590 147

    [21]

    Zhang P, Wang H, Lee Y G, Matsui M, Takeda Y, Yamamoto O, Imanishi N 2015 J. Electrochem. Soc. 162 A1265

    [22]

    Aatiq A, Ménétrier M, Croguennec L, Suardc E, Delmas C 2002 J. Mater. Chem. 12 2971

    [23]

    Takahashi K, Johnson P, Imanishi N, Sammes N, Takeda Y, Yamamoto O 2012 J. Electrochem. Soc. 159 A1065

    [24]

    Bruce P G 1997 Solid State Electrochemistry (Cambridge:Cambridge University Press) p54

  • [1] Yin Kai1, Guo Qi-Yang, Zhang Tian-Yin, Li Jing, Chen Xiang-Rong. Research on improving the insulation properties of epoxy filled with surface fluorinated polystyrene nanospheres. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240215
    [2] Hua Biao, Sun Bao-Zhen, Wang Jing-Xuan, Shi Jing, Xu Bo. Effects of Li content on stability, electronic and Li-ion diffusion properties of Li3xLa(2/3)–x(1/3)–2xTiO3 surface. Acta Physica Sinica, 2023, 72(2): 028201. doi: 10.7498/aps.72.20221808
    [3] Liu Xiu-Cheng, Yang Zhi, Guo Hao, Chen Ying, Luo Xiang-Long, Chen Jian-Yong. Molecular dynamics simulation of thermal conductivity of diamond/epoxy resin composites. Acta Physica Sinica, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [4] He Bing, Lian Yu-Xiang, Wu Mu-Sheng, Luo Wen-Wei, Yang Shen-Bo, Ouyang Chu-Ying. Improvement of performance of halide solid electrolyte by tuning cations. Acta Physica Sinica, 2022, 71(20): 208201. doi: 10.7498/aps.71.20221050
    [5] You Yi-Wei, Cui Jian-Wen, Zhang Xiao-Feng, Zheng Feng, Wu Shun-Qing, Zhu Zi-Zhong. Properties of lithium phosphorus oxynitride (LiPON) solid electrolyte - Li anode interfaces. Acta Physica Sinica, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [6] Peng Lin-Feng, Zeng Zi-Qi, Sun Yu-Long, Jia Huan-Huan, Xie Jia. Facile synthesis and electrochemical properties of Na-rich anti-perovskite solid electrolytes. Acta Physica Sinica, 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [7] Zhang Qiao-Bao, Gong Zheng-Liang, Yang Yong. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Physica Sinica, 2020, 69(22): 228803. doi: 10.7498/aps.69.20201581
    [8] Feng Wu-Liang, Wang Fei, Zhou Xing, Ji Xiao, Han Fu-Dong, Wang Chun-Sheng. Stability of interphase between solid state electrolyte and electrode. Acta Physica Sinica, 2020, 69(22): 228206. doi: 10.7498/aps.69.20201554
    [9] Zhang Nian, Ren Guo-Xi, Zhang Hui, Zhou Deng, Liu Xiao-Song. Research progress of interface problems and optimization of garnet-type solid electrolyte. Acta Physica Sinica, 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [10] Guo Li-Qiang, Tao Jian, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning. Corn starch solid electrolyte gated proton/electron hybrid synaptic transistor. Acta Physica Sinica, 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [11] Shi Mao-Lei, Liu Lei, Tian Fang-Hui, Wang Peng-Fei, Li Jia-Jun, Ma Lei. Effect of lithium-free flux B2O3 on the ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Acta Physica Sinica, 2017, 66(20): 208201. doi: 10.7498/aps.66.208201
    [12] Gao Ming-Ze, Zhang Pei-Hong. Relationship between dielectric properties and nanoparticle dispersion of nano-SiO2/epoxy composite. Acta Physica Sinica, 2016, 65(24): 247802. doi: 10.7498/aps.65.247802
    [13] Lin Sheng-Jun, Huang Yin, Xie Dong-Ri, Min Dao-Min, Wang Wei-Wang, Yang Liu-Qing, Li Sheng-Tao. Molecular relaxation and glass transition properties of epoxy resin at high temperature. Acta Physica Sinica, 2016, 65(7): 077701. doi: 10.7498/aps.65.077701
    [14] Ru Jia-Sheng, Min Dao-Min, Zhang Chong, Li Sheng-Tao, Xing Zhao-Liang, Li Guo-Chang. Research on surface potential decay characteristics of epoxy resin charged by direct current corona. Acta Physica Sinica, 2016, 65(4): 047701. doi: 10.7498/aps.65.047701
    [15] Zhang Ji, Wang Di, Zhang De-Ming, Zhang Qing-Li, Wan Song-Ming, Sun Dun-Lu, Yin Shao-Tang. Temperature-dependent Raman spectroscopic study on orthophosphates Ba3(PO4)2 and Sr3(PO4)2. Acta Physica Sinica, 2013, 62(9): 097802. doi: 10.7498/aps.62.097802
    [16] Liu Ya-Qiang, An Zhen-Lian, Cang Jun, Zhang Ye-Wen, Zheng Fei-Hu. Influence of fluorination time on surface charge accumulation on epoxy resin insulation. Acta Physica Sinica, 2012, 61(15): 158201. doi: 10.7498/aps.61.158201
    [17] Yue Lei-Lei, Chen Yu, Fan Guang-Hui, He Jiao, Zhao De-Xun, Liu Ying-Kai. Influence of defect states on band gaps of the 4340 steel in epoxy in two-dimensional phononic crystal. Acta Physica Sinica, 2011, 60(10): 106103. doi: 10.7498/aps.60.106103
    [18] Zhou Dan, Luo Lai-Hui, Wang Fei-Fei, Jia Yan-Min, Zhao Xiang-Yong, Luo Hao-Su. Research on the performace of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystal/polymer 1-3 piezoelectric composite material. Acta Physica Sinica, 2008, 57(7): 4552-4557. doi: 10.7498/aps.57.4552
    [19] Li Bao-Xing, Ye Mei-Ying, Chu Qiao-Yan, Yu Jian. Investigation on micro-modification mechanism on surface of microfluidic glass chip. Acta Physica Sinica, 2007, 56(6): 3446-3452. doi: 10.7498/aps.56.3446
    [20] HSU SHI-QIU, HAN JI-ZHI. A STUDY OF THE CURING PROCESS OF EPOXY RESIN BY INFRARED SPECTRA. Acta Physica Sinica, 1960, 16(2): 81-85. doi: 10.7498/aps.16.81
Metrics
  • Abstract views:  5780
  • PDF Downloads:  452
  • Cited By: 0
Publishing process
  • Received Date:  03 April 2017
  • Accepted Date:  23 May 2017
  • Published Online:  05 September 2017

/

返回文章
返回