Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of Bloom resolving G-quadruplex process by using high resolution magnetic tweezer with illumination of total internal reflection

Zhao Zhen-Ye Xu Chun-Hua Li Jing-Hua Huang Xing-Yuan Ma Jian-Bing Lu Ying

Citation:

Study of Bloom resolving G-quadruplex process by using high resolution magnetic tweezer with illumination of total internal reflection

Zhao Zhen-Ye, Xu Chun-Hua, Li Jing-Hua, Huang Xing-Yuan, Ma Jian-Bing, Lu Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • G-quadruplex (G4) is a DNA structure which commonly exists in human genome, and it is considered as an important structure in DNA metabolism such as replication, transcription and homologous recombination. The G-quadruplex helicases have been widely investigated these years. Of them, the Bloom (BLM) helicase is most thoroughly studied. However, there are some basic problems that are still unclear. Most of previous studies of G4 are performed by single molecule fluorescence resonance energy transfer technique. The G4 is in a free state in these experiments, which is different from the physiological environment in cells. The traditional magnetic tweezers have a limitation of spatial resolution in a low force circumstance. Thus here we use high resolution magnetic tweezer under the illumination of total internal reflection fluorescence to study the process of BLM resolving G4. Our modification of magnetic tweezer is to separate the measurements of force and distance of magnetic tweezer in order to improve the spatial resolution, which allows us to observe the unfolding process of G4. With a 2-3 pN force we find that the process of BLM unfolding G4 in low ATP concentration is stepwise, and the G4 is mainly in the state between G-quadruplex and G-triplex. We also find that the BLM could interact with G4 for a long time. Our apparatus is also able to obtain the long time observation results compared with the single molecule fluorescence technique. So we perform experiments with a nearly saturated ATP concentration. We find that the BLM has two ways to maintain G4 dissolution in this condition. The BLM could unfold the G4 repetitively in a long period and it could also keep the G4 in unfolding state for a long time after it has opened the G4. Finally, we also perform single molecule fluorescence resonance energy transfer experiment in the same condition, and we find that the 2-3 pN force in magnetic tweezers has a rare influence on the process of BLM interacting with G4. The results of single molecule fluorescence resonance energy transfer experiments are corresponding to the results of magnetic tweezer in the same conditions. All of our experimental results show that ATP dependent BLM has a high affinity with G4 and BLM has a different way to resolve G4 in high ATP concentration. These results could provide new ideas of the mechanism of BLM resolving G4. Our modified magnetic tweezer shows its capacity in G4 single molecule study, and it could be a useful tool in the future single molecule studies.
      Corresponding author: Lu Ying, yinglu@iphy.ac.cn
    • Funds: Project supported by the National Science Foundation of China (Grant Nos. 11674382, 11574381).
    [1]

    Phan A T 2010 FEBS J. 277 1107

    [2]

    Maizels N, Gray L T 2013 PLoS Genet. 9 1003468

    [3]

    Noer S L, Preus S, Gudnason D, Aznauryan M, Mergny J L, Birkedal V 2016 Nucl. Acids Res. 44 464

    [4]

    Lim K W, Amrane S, Bouaziz S, Xu W X, Mu Y G, Patel D J, Luu K N, Phan A T 2009 J. Am. Chem. Soc. 131 4301

    [5]

    Hansel R, Lohr F, Trantirek L, Dotsch V 2013 J. Am. Chem. Soc. 135 2816

    [6]

    Li W, Hou X M, Wang P Y, Xi X G, Li M 2013 J. Am. Chem. Soc. 135 6423

    [7]

    Koirala D, Mashimo T, Sannohe Y, Yu Z, Mao H, Sugiyama H 2012 Chem. Commun. 48 2006

    [8]

    Balasubramanian S, Neidle S 2009 Curr. Opin. Chem. Biol. 13 345

    [9]

    Huppert J L, Balasubramanian S 2005 Nucl. Acids Res. 33 2908

    [10]

    Todd A K, Johnston M, Neidle S 2005 Nucl. Acids Res. 33 2901

    [11]

    Croteau D L, Popuri V, Opresko P L, Bohr V A 2014 Annu. Rev. Biochem. 83 519

    [12]

    Cheok C F, Bachrati C Z, Chan K L, Ralf C, Wu L, Hickson I D 2005 Biochem. Soc. Trans. 33 1456

    [13]

    Goto M 2000 Clin. Exp. Rheumatol. 18 760

    [14]

    Lindor N M, Furuichi Y, Kitao S, Shimamoto A, Arndt C, Jalal S 2000 Am. J. Med. Genet. 90 223

    [15]

    German J, Sanz M A, Ciocci S, Ye T Z, Ellis N A 2007 Hum. Mutat. 28 743

    [16]

    Ellis N A, Groden J, Ye T Z, Straughen J, Lennon D J, Ciocci S, Proytcheva M, German J 1995 Cell 83 655

    [17]

    Wu L, Hickson I D 2003 Nature 426 870

    [18]

    Xu Y N, Bazeille N, Ding X Y, Lu X M, Wang P Y, Bugnard E, Grondin V, Dou S X, Xi X G 2012 Nucl. Acids Res. 40 9802

    [19]

    Sun H, Karow J K, Hickson I D, Maizels N 1998 J. Biol. Chem. 273 27587

    [20]

    Budhathoki J B, Ray S, Urban V, Janscak P, Yodh J G, Balci H 2014 Nucl. Acids Res. 42 11528

    [21]

    Chatterjee S, Zagelbaum J, Savitsky P, Sturzenegger A, Huttner D, Janscak P, Hickson I D, Gileadi O, Rothenberg E 2014 Nat. Commun. 5 5556

    [22]

    Tippana R, Hwang H, Opresko P L, Bohr V A, Myong S 2016 Proc. Natl. Acad. Sci. USA 113 8448

    [23]

    Wu W Q, Hou X M, Li M, Dou S X, Xi X G 2015 Nucl. Acids Res. 43 4614

    [24]

    Wang S, Zheng H Z, Zhao Z Y, Lu Y, Xu C H 2013 Acta Phys. Sin. 62 168703(in Chinese)[王爽, 郑海子, 赵振业, 陆越, 徐春华2013物理学报 62 168703]

    [25]

    Boncina M, Lah J, Prislan I, Vesnaver G 2012 J. Am. Chem. Soc. 134 9657

    [26]

    Ambrus A, Chen D, Dai J X, Bialis T, Jones R A, Yang D Z 2006 Nucl. Acids Res. 34 2723

    [27]

    Manosas M, Xi X G, Bensimon D, Croquette V 2010 Nucl. Acids Res. 38 5518

    [28]

    Roy R, Hohng S, Ha T 2008 Nat. Meth. 5 507

  • [1]

    Phan A T 2010 FEBS J. 277 1107

    [2]

    Maizels N, Gray L T 2013 PLoS Genet. 9 1003468

    [3]

    Noer S L, Preus S, Gudnason D, Aznauryan M, Mergny J L, Birkedal V 2016 Nucl. Acids Res. 44 464

    [4]

    Lim K W, Amrane S, Bouaziz S, Xu W X, Mu Y G, Patel D J, Luu K N, Phan A T 2009 J. Am. Chem. Soc. 131 4301

    [5]

    Hansel R, Lohr F, Trantirek L, Dotsch V 2013 J. Am. Chem. Soc. 135 2816

    [6]

    Li W, Hou X M, Wang P Y, Xi X G, Li M 2013 J. Am. Chem. Soc. 135 6423

    [7]

    Koirala D, Mashimo T, Sannohe Y, Yu Z, Mao H, Sugiyama H 2012 Chem. Commun. 48 2006

    [8]

    Balasubramanian S, Neidle S 2009 Curr. Opin. Chem. Biol. 13 345

    [9]

    Huppert J L, Balasubramanian S 2005 Nucl. Acids Res. 33 2908

    [10]

    Todd A K, Johnston M, Neidle S 2005 Nucl. Acids Res. 33 2901

    [11]

    Croteau D L, Popuri V, Opresko P L, Bohr V A 2014 Annu. Rev. Biochem. 83 519

    [12]

    Cheok C F, Bachrati C Z, Chan K L, Ralf C, Wu L, Hickson I D 2005 Biochem. Soc. Trans. 33 1456

    [13]

    Goto M 2000 Clin. Exp. Rheumatol. 18 760

    [14]

    Lindor N M, Furuichi Y, Kitao S, Shimamoto A, Arndt C, Jalal S 2000 Am. J. Med. Genet. 90 223

    [15]

    German J, Sanz M A, Ciocci S, Ye T Z, Ellis N A 2007 Hum. Mutat. 28 743

    [16]

    Ellis N A, Groden J, Ye T Z, Straughen J, Lennon D J, Ciocci S, Proytcheva M, German J 1995 Cell 83 655

    [17]

    Wu L, Hickson I D 2003 Nature 426 870

    [18]

    Xu Y N, Bazeille N, Ding X Y, Lu X M, Wang P Y, Bugnard E, Grondin V, Dou S X, Xi X G 2012 Nucl. Acids Res. 40 9802

    [19]

    Sun H, Karow J K, Hickson I D, Maizels N 1998 J. Biol. Chem. 273 27587

    [20]

    Budhathoki J B, Ray S, Urban V, Janscak P, Yodh J G, Balci H 2014 Nucl. Acids Res. 42 11528

    [21]

    Chatterjee S, Zagelbaum J, Savitsky P, Sturzenegger A, Huttner D, Janscak P, Hickson I D, Gileadi O, Rothenberg E 2014 Nat. Commun. 5 5556

    [22]

    Tippana R, Hwang H, Opresko P L, Bohr V A, Myong S 2016 Proc. Natl. Acad. Sci. USA 113 8448

    [23]

    Wu W Q, Hou X M, Li M, Dou S X, Xi X G 2015 Nucl. Acids Res. 43 4614

    [24]

    Wang S, Zheng H Z, Zhao Z Y, Lu Y, Xu C H 2013 Acta Phys. Sin. 62 168703(in Chinese)[王爽, 郑海子, 赵振业, 陆越, 徐春华2013物理学报 62 168703]

    [25]

    Boncina M, Lah J, Prislan I, Vesnaver G 2012 J. Am. Chem. Soc. 134 9657

    [26]

    Ambrus A, Chen D, Dai J X, Bialis T, Jones R A, Yang D Z 2006 Nucl. Acids Res. 34 2723

    [27]

    Manosas M, Xi X G, Bensimon D, Croquette V 2010 Nucl. Acids Res. 38 5518

    [28]

    Roy R, Hohng S, Ha T 2008 Nat. Meth. 5 507

  • [1] Zhang Zhi-Peng, Liu Shuai, Zhang Yu-Qiong, Xiong Ying, Han Wei-Jing, Chen Tong-Sheng, Wang Shuang. Rotation manipulation of single-molecule magnetic trapping and gene transcription regulation dynamics. Acta Physica Sinica, 2023, 72(21): 218701. doi: 10.7498/aps.72.20231089
    [2] Zhang Yu-Hang, Xue Zhen-Yong, Sun Hao, Zhang Zhu-Wei, Chen Hu. Single molecule magnetic tweezers for unfolding dynamics of Acyl-CoA binding protein. Acta Physica Sinica, 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [3] Ma Bei-Bei, Wang Fan, Lin Ling, Zhu Tao, Jiang Zhong-Ying. Total internal reflection fluorescence microscopy to study sheet front growth in phospholipid supported lipid membrane formation. Acta Physica Sinica, 2022, 71(16): 168701. doi: 10.7498/aps.71.20220309
    [4] Wu Rong, Sun Ming-Ying, Zhou Shen-Lei, Qiao Zhan-Feng, Hua Neng. Physical problems of diffraction waveguide used in large field of view. Acta Physica Sinica, 2020, 69(23): 234209. doi: 10.7498/aps.69.20200835
    [5] Yang Chen, Zuo Guan-Hua, Tian Zhuang-Zhuang, Zhang Yu-Chi, Zhang Tian-Cai. Influence of pump light on sensitivity of magnetometer based on linearly polarized Bell-Bloom structure. Acta Physica Sinica, 2019, 68(9): 090701. doi: 10.7498/aps.68.20190030
    [6] Ma Jian-Bing, Zhai Yong-Liang, Nong Da-Guan, Li Jing-Hua, Fu Hang, Zhang Xing-Hua, Li Ming, Lu Ying, Xu Chun-Hua. Single molecule transverse magnetic tweezers based on light sheet illumination. Acta Physica Sinica, 2018, 67(14): 148702. doi: 10.7498/aps.67.20180441
    [7] Teng Cui-Juan, Lu Yue, Ma Jian-Bing, Li Ming, Lu Ying, Xu Chun-Hua. Interaction between Sso7d and DNA studied by single-molecule technique. Acta Physica Sinica, 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [8] Chen Ze, Ma Jian-Bing, Huang Xing-Yuan, Jia Qi, Xu Chun-Hua, Zhang Hui-Dong, Lu Ying. T7 helicase unwinding and stand switching investigated via single-molecular technology. Acta Physica Sinica, 2018, 67(11): 118201. doi: 10.7498/aps.67.20180501
    [9] Qian Hui, Chen Hu, Yan Jie. Frontier of soft matter experimental technique: single molecular manipulation. Acta Physica Sinica, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [10] Cao Bo-Zhi, Lin Yu, Wang Yan-Wei, Yang Guang-Can. Single molecular study on interactions between avidin and DNA. Acta Physica Sinica, 2016, 65(14): 140701. doi: 10.7498/aps.65.140701
    [11] Zhang Yu-Wei, Yan Yan, Nong Da-Guan, Xu Chun-Hua, Li Ming. Combination of magnetic tweezers with DNA hairpin as a potential approach to the study of RecA-mediated homologous recombination. Acta Physica Sinica, 2016, 65(21): 218702. doi: 10.7498/aps.65.218702
    [12] Wu Rong, Tian Yu-Ting, Zhao Dong-Feng, Li Da-Wei, Hua Neng, Shao Ping. Total internal reflection orders in transmission grating. Acta Physica Sinica, 2016, 65(5): 054202. doi: 10.7498/aps.65.054202
    [13] Wang Shuang, Zheng Hai-Zi, Zhao Zhen-Ye, Lu Yue, Xu Chun-Hua. A pair of high resolution magnetic tweezers with illumination of total reflection evanescent field and its application in the study of DNA helicases. Acta Physica Sinica, 2013, 62(16): 168703. doi: 10.7498/aps.62.168703
    [14] Ran Shi-Yong. Brownian motion in a harmonic trap: magnetic tweezers experiment and its simulation. Acta Physica Sinica, 2012, 61(17): 170503. doi: 10.7498/aps.61.170503
    [15] Zhang Jun, Yu Tian-Bao, Liu Nian-Hua, Liao Qing-Hua, He Ling-Juan. Propagation properties of light in multimode photonic crystal waveguides with triangular lattices based on total internal reflection. Acta Physica Sinica, 2011, 60(10): 104217. doi: 10.7498/aps.60.104217
    [16] Zhang Xing-Hua, Xiao Bin, Hou Xi-Miao, Xu Chun-Hua, Wang Peng-Ye, Li Ming. Study of cisplatin-induced DNA compaction using single molecule magnetic tweezers. Acta Physica Sinica, 2009, 58(6): 4301-4306. doi: 10.7498/aps.58.4301
    [17] Wu Ying-Cai, Gu Zheng-Tian. Research on the optimum thickness of metallic thin film utilized to excite surface plasmon resonance. Acta Physica Sinica, 2008, 57(4): 2295-2299. doi: 10.7498/aps.57.2295
    [18] Xiang Yuan-Jiang, Wen Shuang-Chun, Tang Kang-Song. Photon tunneling in a frustrated-total-internal-reflection structure composed of a single negative material. Acta Physica Sinica, 2006, 55(6): 2714-2719. doi: 10.7498/aps.55.2714
    [19] Wang Chen, Wang Gui-Ying, Xu Zhi-Zhan. The application of total internal reflection fluorescence microscopy in single fluorophore molecules axial imaging. Acta Physica Sinica, 2004, 53(5): 1325-1330. doi: 10.7498/aps.53.1325
    [20] Wang Chen, Yuan Jing-He, Wang Gui-Ying, Xu Zhi-Zhan. The influence of polarized light on fluorescence emission in total internal refl ection microscopy. Acta Physica Sinica, 2003, 52(12): 3014-3019. doi: 10.7498/aps.52.3014
Metrics
  • Abstract views:  4738
  • PDF Downloads:  106
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2017
  • Accepted Date:  18 May 2017
  • Published Online:  05 September 2017

/

返回文章
返回