Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication of graphene nanostructure and bandgap tuning

Zhang Hui-Zhen Li Jin-Tao Lü Wen-Gang Yang Hai-Fang Tang Cheng-Chun Gu Chang-Zhi Li Jun-Jie

Citation:

Fabrication of graphene nanostructure and bandgap tuning

Zhang Hui-Zhen, Li Jin-Tao, Lü Wen-Gang, Yang Hai-Fang, Tang Cheng-Chun, Gu Chang-Zhi, Li Jun-Jie
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene has potential applications in future microelectronics due to its novel electronic and mechanical properties. However, the lack of the bandgap in graphene poses a challenge and hinders its applications. In order to be able to work in ambient condition, gap engineering of graphene with nanostructure needs about sub-10 nm characteristic size, which increases the difficulty of fabrication and leads to less driving current that can be borne. In this paper, a new method to fabricate sub-10 nm graphene nanostructures is developed. With PMMA/Cr bilayer structure, sub-10 nm graphene nanostructures can be obtained precisely and repeatedly through controlling the etching time. Meanwhile, a new device based on graphene nanoconstrictions connected in parallel is designed and fabricated, whose band gap is bigger than that of graphene nanoribbon and whose characteristic width is the same as that of graphene nanoribbon. With the graphene nanoconstrictions connected in parallel, the band gap of the graphene can be adjusted effectively and the driving current can be significantly increased, which is very important for future practical applications of graphene.
      Corresponding author: Yang Hai-Fang, hfyang@iphy.ac.cn;czgu@iphy.ac.cn ; Gu Chang-Zhi, hfyang@iphy.ac.cn;czgu@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61390503, 91323304, 11674387, 11574385, 11104334, 11504414) and the National Key RD Program of China (Grant Nos. 2016YFA0200800, 2016YFA0200400, 2016YFB0100500).
    [1]

    Son Y W, Cohen M L, Louis S G 2006 Nature 444 347

    [2]

    Elias D, Nair R, Mohiuddin T, Morozov S, Blake P, Halsall M, Ferrari A, Boukhvalov D, Katsnelson M, Geim A 2009 Science 323 610

    [3]

    Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nat. Mater. 9 315

    [4]

    Gorjizadeh N, Farajian A A, Esfarjani K, Kawazoe Y 2008 Phys. Rev. B 78 155427

    [5]

    Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E 2010 Nano Lett. 10 3001

    [6]

    Li X, Fan L, Li Z, Wang K, Zhong M, Wei J, Wu D, Zhu H 2012 Adv. Energy Mater. 2 425

    [7]

    Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z 2011 Adv. Mater. 23 1020

    [8]

    Some S, Kim J, Lee K, Kulkarni A, Yoon Y, Lee S, Kim T, Lee H 2012 Adv. Mater. 24 5481

    [9]

    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F, Ajayan P M 2010 Nat. Mater. 9 430

    [10]

    Pandey R R, Fukumori M, Yousefi A T, Eguchi M, Tanaka D, Ogawa T, Tanaka H 2017 Nanotechnology 28 175704

    [11]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [12]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, ShenY R, Wang F 2009 Nature 459 820

    [13]

    Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151

    [14]

    Vu T T, Nguyen T K Q, Huynh A H, Phan T K L, Tran V T 2017 Superlattice Microst. 102 451

    [15]

    Han M Y, Oezyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [16]

    Han M Y, Brant J C, Kim P 2010 Phys. Rev. Lett. 104 056801

    [17]

    Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877

    [18]

    Bai J, Duan X, Huang Y 2009 Nano Lett. 9 2083

    [19]

    Pan Z, Liu N, Fu L, Liu Z 2011 J. Am. Chem. Soc. 133 17578

    [20]

    Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H 2008 Phys. Rev. Lett. 100 206803

    [21]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [22]

    Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872

    [23]

    Cataldo F, Compagnini G, Patane G, Ursini O, Angelini G, Ribic P R, Margaritondo G, Cricenti A, Palleschi G, Valentini F 2010 Carbon 48 2596

    [24]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [25]

    Kim K, Sussman A, Zettl A 2010 ACS Nano 4 1362

    [26]

    Kato T, Hatakeyama R 2012 Nat. Nanotech. 7 651

    [27]

    Power S R, Jauho A P 2014 Phys. Rev. B 90 115408

    [28]

    Kim M, Safron N S, Han E, Arnold M S, Gopalan P 2010 Nano Lett. 10 1125

    [29]

    Liang X G, Jung Y S, Wu S W, Ismach A, Olynick D L, Cabrini S, Bokor J 2010 Nano Lett. 10 2454

    [30]

    Yang Y B, Yang X D, Zou X M, Wu S T, Wan D, Cao A Y, Liao L, Yuan Q, Duan X F 2017 Adv. Funct. Mater. 27 1604096

    [31]

    Bai J, Zhong X, Jiang S, Huang Y, Duan X 2010 Nat. Nanotech. 5 190

    [32]

    Elias A L, Motello-Mendez A R, Meneses-Rodriguez D, Ramirez-Gonzalez V J, Ci L, Munoz-Sandoval E, Ajayan P M, Terrones H, Terrnes M 2010 Nano Lett. 10 366

    [33]

    Suk J W, Lee W H, Lee J, Chou H, Pine R D, Hao Y, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462

    [34]

    Pisula W, Feng X, Mllen K 2010 Adv. Mater. 22 3634

    [35]

    Lu Y, Goldsmith B, Strachan D R, Lim J H, Luo Z, Johnson A 2010 Small 6 2748

    [36]

    Rotenberg E, Bostwick A, Ohta T, McChesney J L, Seyller T, Horn K 2008 Nat. Mater. 7 258

    [37]

    Wang E, Lu X B, Ding S J, Yao W, Yan M Z, Wan G L, Deng K, Wang S P, Chen G R, Ma L G, Jung J, Fedorov A V, Zhang Y B, Zhang G Y, Zhou S Y 2016 Nat. Phys. 12 1111

    [38]

    Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435

    [39]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301

    [40]

    Li Z Z, Liu Z F, Liu Z R 2017 Nano Res. 10 2005

    [41]

    Solymar L, Walsh D, Syms R R 2014 Electrical Properties of Materials (New York: Oxford University Press)

  • [1]

    Son Y W, Cohen M L, Louis S G 2006 Nature 444 347

    [2]

    Elias D, Nair R, Mohiuddin T, Morozov S, Blake P, Halsall M, Ferrari A, Boukhvalov D, Katsnelson M, Geim A 2009 Science 323 610

    [3]

    Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nat. Mater. 9 315

    [4]

    Gorjizadeh N, Farajian A A, Esfarjani K, Kawazoe Y 2008 Phys. Rev. B 78 155427

    [5]

    Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E 2010 Nano Lett. 10 3001

    [6]

    Li X, Fan L, Li Z, Wang K, Zhong M, Wei J, Wu D, Zhu H 2012 Adv. Energy Mater. 2 425

    [7]

    Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z 2011 Adv. Mater. 23 1020

    [8]

    Some S, Kim J, Lee K, Kulkarni A, Yoon Y, Lee S, Kim T, Lee H 2012 Adv. Mater. 24 5481

    [9]

    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F, Ajayan P M 2010 Nat. Mater. 9 430

    [10]

    Pandey R R, Fukumori M, Yousefi A T, Eguchi M, Tanaka D, Ogawa T, Tanaka H 2017 Nanotechnology 28 175704

    [11]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [12]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, ShenY R, Wang F 2009 Nature 459 820

    [13]

    Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151

    [14]

    Vu T T, Nguyen T K Q, Huynh A H, Phan T K L, Tran V T 2017 Superlattice Microst. 102 451

    [15]

    Han M Y, Oezyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [16]

    Han M Y, Brant J C, Kim P 2010 Phys. Rev. Lett. 104 056801

    [17]

    Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877

    [18]

    Bai J, Duan X, Huang Y 2009 Nano Lett. 9 2083

    [19]

    Pan Z, Liu N, Fu L, Liu Z 2011 J. Am. Chem. Soc. 133 17578

    [20]

    Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H 2008 Phys. Rev. Lett. 100 206803

    [21]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [22]

    Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872

    [23]

    Cataldo F, Compagnini G, Patane G, Ursini O, Angelini G, Ribic P R, Margaritondo G, Cricenti A, Palleschi G, Valentini F 2010 Carbon 48 2596

    [24]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [25]

    Kim K, Sussman A, Zettl A 2010 ACS Nano 4 1362

    [26]

    Kato T, Hatakeyama R 2012 Nat. Nanotech. 7 651

    [27]

    Power S R, Jauho A P 2014 Phys. Rev. B 90 115408

    [28]

    Kim M, Safron N S, Han E, Arnold M S, Gopalan P 2010 Nano Lett. 10 1125

    [29]

    Liang X G, Jung Y S, Wu S W, Ismach A, Olynick D L, Cabrini S, Bokor J 2010 Nano Lett. 10 2454

    [30]

    Yang Y B, Yang X D, Zou X M, Wu S T, Wan D, Cao A Y, Liao L, Yuan Q, Duan X F 2017 Adv. Funct. Mater. 27 1604096

    [31]

    Bai J, Zhong X, Jiang S, Huang Y, Duan X 2010 Nat. Nanotech. 5 190

    [32]

    Elias A L, Motello-Mendez A R, Meneses-Rodriguez D, Ramirez-Gonzalez V J, Ci L, Munoz-Sandoval E, Ajayan P M, Terrones H, Terrnes M 2010 Nano Lett. 10 366

    [33]

    Suk J W, Lee W H, Lee J, Chou H, Pine R D, Hao Y, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462

    [34]

    Pisula W, Feng X, Mllen K 2010 Adv. Mater. 22 3634

    [35]

    Lu Y, Goldsmith B, Strachan D R, Lim J H, Luo Z, Johnson A 2010 Small 6 2748

    [36]

    Rotenberg E, Bostwick A, Ohta T, McChesney J L, Seyller T, Horn K 2008 Nat. Mater. 7 258

    [37]

    Wang E, Lu X B, Ding S J, Yao W, Yan M Z, Wan G L, Deng K, Wang S P, Chen G R, Ma L G, Jung J, Fedorov A V, Zhang Y B, Zhang G Y, Zhou S Y 2016 Nat. Phys. 12 1111

    [38]

    Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435

    [39]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301

    [40]

    Li Z Z, Liu Z F, Liu Z R 2017 Nano Res. 10 2005

    [41]

    Solymar L, Walsh D, Syms R R 2014 Electrical Properties of Materials (New York: Oxford University Press)

  • [1] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [2] Dong Hui-Ying, Qin Xiao-Ru, Xue Wen-Rui, Cheng Xin, Li Ning, Li Chang-Yong. Mode characteristics of asymmetric graphene-coated elliptical dielectric nano-parallel wires waveguide. Acta Physica Sinica, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [3] Zhang Yu-Xiang, Peng Yi-Tian, Lang Hao-Jie. Controllable nano-friction of graphene surface by fabricating nanoscale patterning based on atomic force microscopy. Acta Physica Sinica, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [4] Wang Tian-Hui, Li Ang, Han Bai. First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors. Acta Physica Sinica, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [5] Chen Yong, Li Rui. Interaction between borophene and graphene on a nanoscale. Acta Physica Sinica, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [6] Chen Ling-Xiu, Wang Hui-Shan, Jiang Cheng-Xin, Chen Chen, Wang Hao-Min. Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride. Acta Physica Sinica, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [7] Peng Yan-Ling, Xue Wen-Rui, Wei Zhuang-Zhi, Li Chang-Yong. Mode properties analysis of graphene-coated asymmetric parallel dielectric nanowire waveguides. Acta Physica Sinica, 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [8] Wei Zhuang-Zhi, Xue Wen-Rui, Peng Yan-Ling, Cheng Xin, Li Chang-Yong. Modes characteristics analysis of THz waveguides based on three graphene-coated dielectric nanowires. Acta Physica Sinica, 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [9] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [10] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [11] Bai Qing-Shun, Shen Rong-Qi, He Xin, Liu Shun, Zhang Fei-Hu, Guo Yong-Bo. Interface adhesion property between graphene film and surface of nanometric microstructure. Acta Physica Sinica, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [12] Liao Tao, Sun Xiao-Wei, Song Ting, Tian Jun-Hong, Kang Tai-Feng, Sun Wei-Bin. Tunable bandgaps in novel two-dimensional piezoelectric phononic crystal slab. Acta Physica Sinica, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [13] Zhang Hui, Cai Xiao-Ming, Hao Zhen-Liang, Ruan Zi-Lin, Lu Jian-Chen, Cai Jin-Ming. Fabrication and electrical engineering of graphene nanoribbons. Acta Physica Sinica, 2017, 66(21): 218103. doi: 10.7498/aps.66.218103
    [14] Gu Yun-Feng, Wu Xiao-Li, Wu Hong-Zhang. Ballistic thermal rectification in the three-terminal graphene nanojunction with asymmetric connection angles. Acta Physica Sinica, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [15] Yang Jing-Jing, Li Jun-Jie, Deng Wei, Cheng Cheng, Huang Ming. Transmission mode of a single layer graphene and its performance in the detection of the vibration spectrum of gas molecular. Acta Physica Sinica, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [16] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [18] Dong Hai-Ming. Electrically-controlled nonlinear terahertz optical properties of graphene. Acta Physica Sinica, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [19] Yao Hai-Feng, Xie Yue-E, Ouyang Tao, Chen Yuan-Ping. Thermal transport of graphene nanoribbons embedding linear defects. Acta Physica Sinica, 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [20] Wu Xiang, Cai Wei, Qu Feng-Yu. Tailoring the morphology and wettability of ZnO one-dimensional nanostructures. Acta Physica Sinica, 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
Metrics
  • Abstract views:  7230
  • PDF Downloads:  487
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2017
  • Accepted Date:  14 August 2017
  • Published Online:  05 November 2017

/

返回文章
返回