Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gigahertz frequency doubler based on millimeter-scale single-crystal graphene

Gao Qing-Guo Tian Meng-Chuan Li Si-Chao Li Xue-Fei Wu Yan-Qing

Citation:

Gigahertz frequency doubler based on millimeter-scale single-crystal graphene

Gao Qing-Guo, Tian Meng-Chuan, Li Si-Chao, Li Xue-Fei, Wu Yan-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene shows great potential applications in ultrahigh speed electronics due to its high carrier mobility and velocity. Nowadays, many radio frequency circuits based on graphene have been realized. For example, graphene frequency doubler is a promising option for signal generation at high frequencies. Graphene frequency doubler can achieve excellent spectral purity, because of its ambipolar transport and highly symmetric transfer characteristics. Here, we present high performance graphene frequency doublers based on millimeter-scale single-crystal graphene on HfO2 and Si substrates. We achieve a high spectral purity degree of larger than 94% without any filtering and the conversion gain is -23.4 dB at fin=1 GHz. The high conversion gain and spectral purity can be attributed to the high-quality millimeter-scale single-crystal graphene and high-quality high- substrates. Furthermore, we investigate the relation of conversion gain to source-drain voltage Vd and input signal power Pin. The results show that the conversion gain increases with source-drain voltage increasing, and the conversion gain also increases with input signal power increasing. The dependence of conversion gain on Vd and Pin can be attributed to the transconductance increasing with Vd and Pin. We compare the conversion gains and spectral purity degrees of graphene frequency doublers with different transconductances and electron-hole symmetries at different frequencies. The result shows that the conversion gain is larger for device with higher transconductance and the spectral purity has a moderate tolerance for the electron-hole symmetry of the graphene transistor at fin=1 GHz. As the working frequency increases to 4 GHz, the spectral purity of the device with weak electron-hole symmetry decreases dramatically, while the spectral purity of the device with better electron-hole symmetry is kept around 85%. We attribute this phenomenon to the different carrier transit times and different electron-hole symmetries of graphene transistors. In conclusion, the short channel graphene transistor with ultrathin gate dielectric and high electron-hole symmetry is needed in order to achieve high performance graphene frequency doubler.
      Corresponding author: Wu Yan-Qing, yqwu@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61390504, 61574066, 11404118).
    [1]

    Schwierz F 2010 Nat. Nanotechnol. 5 487

    [2]

    Wu Y, Jenkins K A, Valdes-Garcia A, Farmer D B, Zhu Y, Bol A A, Dimitrakopoulos C, Zhu W, Xia F, Avouris P 2012 Nano Lett. 12 3062

    [3]

    Wu Y, Zou X, Sun M, Cao Z, Wang X, Huo S, Zhou J, Yang Y, Yu X, Kong Y 2016 ACS Appl. Mater. Interfaces 8 25645

    [4]

    Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547

    [5]

    Wang H, Hsu A, Kim K K, Kong J, Palacios T 2010 IEEE International Electron Devices Meeting San Francisco, USA, December 6-8, 2010 p23.6.1

    [6]

    Wang Z, Zhang Z, Xu H, Ding L, Wang S, Peng L M 2010 Appl. Phys. Lett. 96 173104

    [7]

    Liao L, Bai J, Cheng R, Zhou H, Liu L, Liu Y, Huang Y, Duan X 2011 Nano Lett. 12 2653

    [8]

    L H, Wu H, Liu J, Huang C, Li J, Yu J, Niu J, Xu Q, Yu Z, Qian H 2014 Nanoscale 6 5826

    [9]

    Andersson M A, Zhang Y, Stake J 2017 IEEE Trans. Microw. Theory Tech. 65 165

    [10]

    Wang H, Hsu A, Wu J, Kong J, Palacios T 2010 IEEE Electron Dev. Lett. 31 906

    [11]

    Yang X, Liu G, Rostami M, Balandin A A, Mohanram K 2011 IEEE Electron Dev. Lett. 32 1328

    [12]

    Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086

    [13]

    Yu C, He Z, Liu Q, Song X, Xu P, Han T, Li J, Feng Z, Cai S 2016 IEEE Electron Dev. Lett. 37 684

    [14]

    Habibpour O, He Z S, Strupinski W, Rorsman N, Zirath H 2017 Sci. Rep. 7 41828

    [15]

    Gan L, Luo Z 2013 ACS Nano 7 9480

    [16]

    Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X 2013 Nat. Commun. 4 2096

    [17]

    Hao Y, Bharathi M, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B 2013 Science 342 720

    [18]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q 2016 Nat. Mater. 15 43

    [19]

    Wei Z, Fu Y, Liu J, Wang Z, Jia Y, Guo J, Ren L, Chen Y, Zhang H, Huang R, Zhang X 2014 Chin. Phys. B 23 117201

    [20]

    Lakshmi Ganapathi K, Bhat N, Mohan S 2013 Appl. Phys. Lett. 103 073105

    [21]

    Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107

    [22]

    Wu Y, Lin Y M, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74

  • [1]

    Schwierz F 2010 Nat. Nanotechnol. 5 487

    [2]

    Wu Y, Jenkins K A, Valdes-Garcia A, Farmer D B, Zhu Y, Bol A A, Dimitrakopoulos C, Zhu W, Xia F, Avouris P 2012 Nano Lett. 12 3062

    [3]

    Wu Y, Zou X, Sun M, Cao Z, Wang X, Huo S, Zhou J, Yang Y, Yu X, Kong Y 2016 ACS Appl. Mater. Interfaces 8 25645

    [4]

    Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547

    [5]

    Wang H, Hsu A, Kim K K, Kong J, Palacios T 2010 IEEE International Electron Devices Meeting San Francisco, USA, December 6-8, 2010 p23.6.1

    [6]

    Wang Z, Zhang Z, Xu H, Ding L, Wang S, Peng L M 2010 Appl. Phys. Lett. 96 173104

    [7]

    Liao L, Bai J, Cheng R, Zhou H, Liu L, Liu Y, Huang Y, Duan X 2011 Nano Lett. 12 2653

    [8]

    L H, Wu H, Liu J, Huang C, Li J, Yu J, Niu J, Xu Q, Yu Z, Qian H 2014 Nanoscale 6 5826

    [9]

    Andersson M A, Zhang Y, Stake J 2017 IEEE Trans. Microw. Theory Tech. 65 165

    [10]

    Wang H, Hsu A, Wu J, Kong J, Palacios T 2010 IEEE Electron Dev. Lett. 31 906

    [11]

    Yang X, Liu G, Rostami M, Balandin A A, Mohanram K 2011 IEEE Electron Dev. Lett. 32 1328

    [12]

    Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086

    [13]

    Yu C, He Z, Liu Q, Song X, Xu P, Han T, Li J, Feng Z, Cai S 2016 IEEE Electron Dev. Lett. 37 684

    [14]

    Habibpour O, He Z S, Strupinski W, Rorsman N, Zirath H 2017 Sci. Rep. 7 41828

    [15]

    Gan L, Luo Z 2013 ACS Nano 7 9480

    [16]

    Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X 2013 Nat. Commun. 4 2096

    [17]

    Hao Y, Bharathi M, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B 2013 Science 342 720

    [18]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q 2016 Nat. Mater. 15 43

    [19]

    Wei Z, Fu Y, Liu J, Wang Z, Jia Y, Guo J, Ren L, Chen Y, Zhang H, Huang R, Zhang X 2014 Chin. Phys. B 23 117201

    [20]

    Lakshmi Ganapathi K, Bhat N, Mohan S 2013 Appl. Phys. Lett. 103 073105

    [21]

    Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107

    [22]

    Wu Y, Lin Y M, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74

  • [1] Cheng Jia, Wu Ya-Dong, Yan Ri, Peng Xue-Fang, Zhu Ren-Jiang, Wang Tao, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng. Tunable ultraviolet laser based on intracavity third harmonic generation of external cavity surface emitting laser. Acta Physica Sinica, 2024, 73(8): 084202. doi: 10.7498/aps.73.20231923
    [2] Wu Ya-Dong, Zhu Ren-Jiang, Yan Ri, Peng Xue-Fang, Wang Tao, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng. Intracavity frequency-doubled external-cavity surface-emitting blue laser with high conversion efficiency. Acta Physica Sinica, 2024, 73(1): 014203. doi: 10.7498/aps.73.20231278
    [3] Duan Yan-Min, Zhou Yu-Ming, Sun Ying-Lu, Li Zhi-Hong, Zhang Yao-Ju, Wang Hong-Yan, Zhu Hai-Yong. Frequency doubling of acousto-optic Q-switched Nd:YVO4 cascaded Raman laser for narrow pulse-width 657 nm laser. Acta Physica Sinica, 2021, 70(22): 224209. doi: 10.7498/aps.70.20210695
    [4] Qiu Wei, Zhang Qi-Peng, Li Qiu, Xu Chao-Chen, Guo Jian-Gang. Experimental study on interfacial mechanical behavior of single-layer monocrystalline graphene on a stretchable substrate. Acta Physica Sinica, 2017, 66(16): 166801. doi: 10.7498/aps.66.166801
    [5] Li Xiao-Ming, Shen Xue-Ju, Liu Xun, Wang Lin. Study on temperature adaptability extension of KTP frequency-doubling device. Acta Physica Sinica, 2015, 64(9): 094205. doi: 10.7498/aps.64.094205
    [6] Han Lin-Zhi, Zhao Zhan-Xia, Ma Zhong-Quan. Process parameters of large single crystal graphene prepared by chemical vapor deposition. Acta Physica Sinica, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [7] Deng Qing-Hua, Zhang Xiao-Min, Ding Lei, Tang Jun, Xie Xu-Dong, Lu Zhen-Hua, Zhao Run-Chang, Dong Yi-Fang. Stabilizing second harmonic generation output using cascaded crystals. Acta Physica Sinica, 2011, 60(2): 024213. doi: 10.7498/aps.60.024213
    [8] Ren Ai-Hong, Liu Zheng-Ying, Zhang Rong-Zhu, Liu Jing-Lun, Sun Nian-Chun. Bandwidth in qusai-phase-matched frequency doubling. Acta Physica Sinica, 2010, 59(10): 7050-7054. doi: 10.7498/aps.59.7050
    [9] Zhang Yu-Ping, Zhang Hui-Yun, He Zhi-Hong, Wang Peng, Li Xi-Fu, Yao Jian-Quan. A 36 W intracavity-frequency-doubled diode-side-pumped Nd:YAG/KTP continuous wave green laser. Acta Physica Sinica, 2009, 58(7): 4647-4651. doi: 10.7498/aps.58.4647
    [10] Zong Nan, Cui Da-Fu, Li Cheng-Ming, Peng Qin-Jun, Xu Zu-Yan, Qin Li, Li Te, Ning Yong-Qiang, Yan Chang-Ling, Wang Li-Jun. Numerical simulation of intracavity second harmonic generation for optically pumped semiconductor vertical-external-cavity surface-emitting lasers. Acta Physica Sinica, 2009, 58(6): 3903-3908. doi: 10.7498/aps.58.3903
    [11] Yan Guo-Jun, Chen Guang-De, Wu Ye-Long, Yang Jian-Qing. Second-harmonic power generated in the absorbing and birefringent nonlinear medium. Acta Physica Sinica, 2008, 57(1): 265-270. doi: 10.7498/aps.57.265
    [12] Wang Zhi-Ming, Xu Qing-Yu, Zhang Shi-Yuan, Xing Ding-Yu, Du You-Wei. Difference in electric conduction of monocrystal and polycrystal graphite. Acta Physica Sinica, 2007, 56(6): 3464-3467. doi: 10.7498/aps.56.3464
    [13] Li Rui-Ning, Lai Yin-Juan, Ma Xiao-Tao. . Acta Physica Sinica, 2002, 51(8): 1736-1738. doi: 10.7498/aps.51.1736
    [14] Zhao Bo, Wu Yum, Sun Zhen-Rong, Wang Zu-Geng. . Acta Physica Sinica, 2000, 49(4): 730-732. doi: 10.7498/aps.49.730
    [15] HE JING-LIANG, LU XING-QIANG, JIA YU-LEI, MAN BAO-YUAN, ZHU SHI-NING, ZHU YONG -YUAN. ALL-SOLID-STATE Nd:YVO4 UV LASER AT 266nm BY FOURTH HARMONIC USING A BBO CRYSTAL. Acta Physica Sinica, 2000, 49(10): 2106-2108. doi: 10.7498/aps.49.2106
    [16] WU KE-CHEN, CHEN CHUANG-TIAN. THEORETICAL CALCULATION OF SHG COEFFICIENTS OF Na2SbF5 CRYSTAL. Acta Physica Sinica, 1992, 41(9): 1436-1439. doi: 10.7498/aps.41.1436
    [17] XUE YING-HUA, MIN NAI-BEN, ZHU JIN-SONG, FENG DUAN. THE SECOND HARMONIC GENERATION IN LiNbO3 CRYSTALS WITH PERIODIC LAMINAR FERROELECTRIC DOMAINS. Acta Physica Sinica, 1983, 32(12): 1515-1525. doi: 10.7498/aps.32.1515
    [18] CHEN CHUANG-TIAN, SHEN HE-SHENG. THE CALCULATION OF SHG COEFFICIENTS FOR CRYSTALS WITH ZINC BLENDE AND WURTZITE STRUCTURES BY USING THE EQUIVALENT ORBITAL METHOD. Acta Physica Sinica, 1982, 31(8): 1046-1056. doi: 10.7498/aps.31.1046
    [19] CHEN CHUANG-TIAN, CHEN XIAO-SHEN. A GENERAL TRANSFORMATION FORMULA FOR SHG COEFFI-C1ENTS OF A CRYSTAL AND THOSE OF ITS ANIONIC GROUPINGS. Acta Physica Sinica, 1980, 29(8): 1000-1013. doi: 10.7498/aps.29.1000
    [20] . Acta Physica Sinica, 1965, 21(8): 1581-1583. doi: 10.7498/aps.21.1581
Metrics
  • Abstract views:  4785
  • PDF Downloads:  228
  • Cited By: 0
Publishing process
  • Received Date:  28 August 2017
  • Accepted Date:  10 October 2017
  • Published Online:  05 November 2017

/

返回文章
返回