Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principles studies on molecular structure and electronic properties of K- and Ba-codoped phenanthrene

Xuan Shu-Ke

Citation:

First principles studies on molecular structure and electronic properties of K- and Ba-codoped phenanthrene

Xuan Shu-Ke
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The superconductivity has always been one of the important topics in condensed matter physics. Recently, the discovery of superconductivity in potassium-doped picene have opened the way to a new class of organic superconductor, and at the same time metal-doped aromatic hydrocarbons have attracted great interest of researchers in investigating their physical and chemical properties. In this paper, according to the plane wave and pseudopotential method in the framework of density functional theory, we systematically study the structural and electronic properties of the K/Ba-codoped phenanthrene, including the atomic structure, band structure, density of states, formation energy, and charge transfer between dopant and phenanthrene molecule, and three meaningful conclusions have been drawn as follows. At first, the van der Waals interaction is found to play an important role in determining the atomic structure of metal-doped molecular solid, so it is necessary to include the interactions in these calculations. Secondly, due to the similarity in ionic radius, the combination of K and Ba is the favorable scheme for multiple-metal codoped phenanthrene crystal compared with K/Ca and K/Sr codoping schemes. From the viewpoint of formation energy, K1Ba1-phenanthrene has a bigger formation energy (-0.25 eV) per doped metal atom than K1Sr1-phenanthrene (-0.13 eV) and K1Ca1-phenanthrene (-0.04 eV). Thirdly, in order to realize the -3 valent state of phenanthrene molecule in K/Ba-codoped phenanthrene, the codoping of monovalent and bivalent metals is the only viable option due to the narrow interstitial space in molecular crystal. The bands crossing the Fermi level are from the lowest unoccupied molecular orbital (LUMO) and LUMO+1 orbital, resulting in the metallic state of K1Ba1-phenanthrene. The large density of states at the Fermi level is 17.3 eV-1, and these electronic states are mainly from C 2p orbitals and a little contribution from Ba 5d orbitals. Our studies present the electronic structure of K1Ba1-phenanthrene and suggest that K/Ba-codoping is a rational scheme to synthesize the superconductive sample, which provides a new route to the exploration of the promising superconductivity in metal-doped aromatic hydrocarbons.
      Corresponding author: Xuan Shu-Ke, shuke158@126.com
    [1]

    Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76

    [2]

    Okazaki H, Jabuchi T, Wakita T, Kato T, Muraoka Y, Yokoya T 2013 Phys. Rev. B 88 245414

    [3]

    Kubozono Y, Mitamura H, Lee X, He X, Yamanari Y, Takahashi Y, Suzuki Y, Kaji Y, Eguchi R, Akaike K, Kambe T, Okamoto H, Fujiwara A, Kato T, Kosugi T, Aoki H 2011 Phys. Chem. Chem. Phys. 13 16476

    [4]

    Wang X F, Liu R H, Gui Z, Xie Y L, Yan Y J, Ying J J, Luo X G, Chen X H 2011 Nat. Commun. 2 507

    [5]

    Wang X F, Yan Y J, Gui Z, Liu R H, Ying J J, Luo X G, Chen X H 2011 Phys. Rev. B 84 214523

    [6]

    Wang X F, Luo X G, Ying J J, Xiang Z J, Zhang S L, Zhang R R, Zhang Y H, Yan Y J, Wang A F, Cheng P, Ye G J, Chen X H 2012 J. Phys. Condens. Matt. 24 345701

    [7]

    Xue M, Cao T, Wang D, Wu Y, Yang H, Dong X, He J, Li F, Chen G F 2012 Sci. Rep. 2 389

    [8]

    Huang Q W, Zhong G H, Zhang J, Zhao X M, Zhang C, Lin H Q, Chen X J 2014 J. Chem. Phys. 140 114301

    [9]

    Nakagawa T, Yuan Z, Zhang J, Yusenko K V, Drathen C, Liu Q, Margadonna S, Jin C 2016 J. Phys. Condens. Matt. 28 484001

    [10]

    Gao Y, Wang R S, Wu X L, Cheng J, Deng T G, Yan X W, Huang Z B 2016 Acta Phys. Sin. 65 077402 (in Chinese)[高云, 王仁树, 邬小林, 程佳, 邓天郭, 闫循旺, 黄忠兵 2016 物理学报 65 077402]

    [11]

    Wu X, Xu C, Wang K, Xiao X 2016 J. Phys. Chem. C 120 15446

    [12]

    Phan Q T N, Heguri S, Tamura H, Nakano T, Nozue Y, Tanigaki K 2016 Phys. Rev. B 93 075130

    [13]

    Kambe T, Nishiyama S, Nguyen H L T, Terao T, Izumi M, Sakai Y, Zheng L, Goto H, Itoh Y, Onji T, Kobayashi T C, Sugino H, Gohda S, Okamoto H, Kubozono Y 2016 J. Phys. Condens. Matt. 28 444001

    [14]

    Kosugi T, Miyake T, Ishibashi S, Arita R, Aoki H 2011 Phys. Rev. B 84 214506

    [15]

    de Andres P L, Guijarro A, Vergés J A 2011 Phys. Rev. B 83 245113

    [16]

    Giovannetti G, Capone M 2011 Phys. Rev. B 83 134508

    [17]

    Naghavi S S, Fabrizio M, Qin T, Tosatti E 2013 Phys. Rev. B 88 115106

    [18]

    Zhong G, Huang Z, Lin H 2014 IEEE Trans. Magn. 50 1700103

    [19]

    Yan X W, Huang Z, Lin H Q 2013 J. Chem. Phys. 139 204709

    [20]

    Yan X W, Huang Z, Lin H Q 2014 J. Chem. Phys. 141 224501

    [21]

    Yan X W, Zhang C, Zhong G, Ma D, Gao M 2016 J. Mater. Chem. C 4 11566

    [22]

    Dutta T, Mazumdar S 2014 Phys. Rev. B 89 245129

    [23]

    Yan X W, Wang Y, Gao M, Ma D, Huang Z 2016 J. Phys. Chem. C 120 22565

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Klimeš J, Bowler D R, Michaelides A 2011 Phys. Rev. B 83 195131

    [26]

    Kay M I, Okaya Y, Cox D E 1971 Acta Cryst. B 27 26

    [27]

    Guo J, Sun L L 2015 Acta Phys. Sin. 64 217406 (in Chinese)[郭静, 孙力玲 2015 物理学报 64 217406]

  • [1]

    Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76

    [2]

    Okazaki H, Jabuchi T, Wakita T, Kato T, Muraoka Y, Yokoya T 2013 Phys. Rev. B 88 245414

    [3]

    Kubozono Y, Mitamura H, Lee X, He X, Yamanari Y, Takahashi Y, Suzuki Y, Kaji Y, Eguchi R, Akaike K, Kambe T, Okamoto H, Fujiwara A, Kato T, Kosugi T, Aoki H 2011 Phys. Chem. Chem. Phys. 13 16476

    [4]

    Wang X F, Liu R H, Gui Z, Xie Y L, Yan Y J, Ying J J, Luo X G, Chen X H 2011 Nat. Commun. 2 507

    [5]

    Wang X F, Yan Y J, Gui Z, Liu R H, Ying J J, Luo X G, Chen X H 2011 Phys. Rev. B 84 214523

    [6]

    Wang X F, Luo X G, Ying J J, Xiang Z J, Zhang S L, Zhang R R, Zhang Y H, Yan Y J, Wang A F, Cheng P, Ye G J, Chen X H 2012 J. Phys. Condens. Matt. 24 345701

    [7]

    Xue M, Cao T, Wang D, Wu Y, Yang H, Dong X, He J, Li F, Chen G F 2012 Sci. Rep. 2 389

    [8]

    Huang Q W, Zhong G H, Zhang J, Zhao X M, Zhang C, Lin H Q, Chen X J 2014 J. Chem. Phys. 140 114301

    [9]

    Nakagawa T, Yuan Z, Zhang J, Yusenko K V, Drathen C, Liu Q, Margadonna S, Jin C 2016 J. Phys. Condens. Matt. 28 484001

    [10]

    Gao Y, Wang R S, Wu X L, Cheng J, Deng T G, Yan X W, Huang Z B 2016 Acta Phys. Sin. 65 077402 (in Chinese)[高云, 王仁树, 邬小林, 程佳, 邓天郭, 闫循旺, 黄忠兵 2016 物理学报 65 077402]

    [11]

    Wu X, Xu C, Wang K, Xiao X 2016 J. Phys. Chem. C 120 15446

    [12]

    Phan Q T N, Heguri S, Tamura H, Nakano T, Nozue Y, Tanigaki K 2016 Phys. Rev. B 93 075130

    [13]

    Kambe T, Nishiyama S, Nguyen H L T, Terao T, Izumi M, Sakai Y, Zheng L, Goto H, Itoh Y, Onji T, Kobayashi T C, Sugino H, Gohda S, Okamoto H, Kubozono Y 2016 J. Phys. Condens. Matt. 28 444001

    [14]

    Kosugi T, Miyake T, Ishibashi S, Arita R, Aoki H 2011 Phys. Rev. B 84 214506

    [15]

    de Andres P L, Guijarro A, Vergés J A 2011 Phys. Rev. B 83 245113

    [16]

    Giovannetti G, Capone M 2011 Phys. Rev. B 83 134508

    [17]

    Naghavi S S, Fabrizio M, Qin T, Tosatti E 2013 Phys. Rev. B 88 115106

    [18]

    Zhong G, Huang Z, Lin H 2014 IEEE Trans. Magn. 50 1700103

    [19]

    Yan X W, Huang Z, Lin H Q 2013 J. Chem. Phys. 139 204709

    [20]

    Yan X W, Huang Z, Lin H Q 2014 J. Chem. Phys. 141 224501

    [21]

    Yan X W, Zhang C, Zhong G, Ma D, Gao M 2016 J. Mater. Chem. C 4 11566

    [22]

    Dutta T, Mazumdar S 2014 Phys. Rev. B 89 245129

    [23]

    Yan X W, Wang Y, Gao M, Ma D, Huang Z 2016 J. Phys. Chem. C 120 22565

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Klimeš J, Bowler D R, Michaelides A 2011 Phys. Rev. B 83 195131

    [26]

    Kay M I, Okaya Y, Cox D E 1971 Acta Cryst. B 27 26

    [27]

    Guo J, Sun L L 2015 Acta Phys. Sin. 64 217406 (in Chinese)[郭静, 孙力玲 2015 物理学报 64 217406]

  • [1] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [2] Ding Chao, Li Wei1\2\3, Liu Ju-Yan, Wang Lin-Lin, Cai Yun, Pan Pei-Feng. First principle study of electronic structure of Sb, S Co-doped SnO2. Acta Physica Sinica, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [3] Wu Ruo-Xi, Liu Dai-Jun, Yu Yang, Yang Tao. First-principles investigations on structure and thermodynamic properties of CaS under high pressures. Acta Physica Sinica, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [4] Ma Zhen-Ning, Zhou Quan, Wang Qing-Jie, Wang Xun, Wang Lei. First-principles study of the thermodynamic stabilities and electronic structures of long-period stacking ordered phases in Mg-Y-Cu alloys. Acta Physica Sinica, 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [5] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [6] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [7] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [8] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [9] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [10] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [11] Wang Ai-Ling, Wu Zhi-Min, Wang Cong, Hu Ai-Yuan, Zhao Ruo-Yu. First-priciples study on Mn-doped LiZnAs, a new diluted magnetic semiconductor. Acta Physica Sinica, 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [12] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [13] Yu Ben-Hai, Liu Mo-Lin, Chen Dong. First principles study of structural, electronic and elastic properties of Mg2 Si polymorphs. Acta Physica Sinica, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [14] Wang Yu-Mei, Pei Hui-Xia, Ding Jun, Wen Li-Wei. First-principles study of magnetism and electronic structureof Sb-containing half-Heusler alloys. Acta Physica Sinica, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [15] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [16] Yu Da-Long, Chen Yu-Hong, Cao Yi-Jie, Zhang Cai-Rong. Ab initio structural simulation and electronic structure of lithium imide. Acta Physica Sinica, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [17] Song Jiu-Xu, Yang Yin-Tang, Liu Hong-Xia, Zhang Zhi-Yong. First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes. Acta Physica Sinica, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [18] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [19] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. A first-principle study of electronic and geometrical structures of semiconducting β-FeSi2 with doping. Acta Physica Sinica, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
Metrics
  • Abstract views:  4457
  • PDF Downloads:  133
  • Cited By: 0
Publishing process
  • Received Date:  10 March 2017
  • Accepted Date:  25 April 2017
  • Published Online:  05 December 2017

/

返回文章
返回