Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and fabrication of high electron mobility transistor devices with gallium nitride-based

Zhu Yan-Xu Song Hui-Hui Wang Yue-Hua Li Lai-Long Shi Dong

Citation:

Design and fabrication of high electron mobility transistor devices with gallium nitride-based

Zhu Yan-Xu, Song Hui-Hui, Wang Yue-Hua, Li Lai-Long, Shi Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Gallium nitride (GaN) and its family of materials (including GaN, InN, AlN and their alloys) are known as the third generation of semiconductor, which has important applications in optoelectronics and microelectronics. In the structure of GaN-based high electron mobility transistor (HEMT) device, there is a relatively large conduction band offset in the AlGaN/GaN heterojunction structure, and it can produce a strong spontaneous and piezoelectric polarization effect in the vicinity of the heterojunction, which can also accumulate high concentrations of two-dimensional electron gas (2DEG) under the condition of no need of intentionally doping at the interface. The surface of Heterojunction AlGaN/GaN interface will form a 2DEG channel, and the 2DEG in potential well is controlled by the gate voltage, also the 2DEG layer is very close to the surface, which is sensitive to the state of the surface. When the surface state changes, it can cause a change in the 2DEG density, thus the concentration of 2DEG can be adjusted by changing the surface states, thereby changing the current between the source and drain. GaN-based HEMT serves as a gate control device, which has a high concentration of 2DEG and is sensitive to the surface state at the AlGaN/GaN heterojunction. According to the basic structure and advantages of the GaN-based HEMT device, the ferroelectric thin film PZT is deposited on the metal gate serving as a light sensitive layer. When the light is incident on the gate, the photo-sensing layer PZT generates the photovoltaic effect, which causes the surface charge of the photosensitive layer to change, and also causes the 2DEG to change, so the input current changes. In this paper, firstly, a new “M/F/M/S” structure is proposed by introducing a photosensitive material PZT on a GaN-based HEMT gate electrode and combining the PZT of a ferroelectric thin film with photovoltaic effect. Secondly, the HEMT device is fabricated on the AlGaN/GaN epitaxial wafer of sapphire substrate, and the photosensitive unit PZT is prepared on the gate, and thus the HEMT device with photosensitive is realized. Finally, the carrier concentration in the channel is regulated by the photovoltaic effect of PZT and 365 nm UV and visible light are detected through changing the source-drain current. The comparative tests under the conditions with and without a photosensitive gate HEMT device show that when the voltage Vgs is smaller, the saturation drain-source current Ids measured under the irradiation of visible light in the former condition is not reduced compared with that in the latter condition, and the increment of Ids measured in the former condition is 5.2 mA larger than in the latter condition. Therefore it can be seen that the PZT can act on the gate GaN-based HEMT device under the irradiation of visible and ultraviolet light and adjust the channel current.
      Corresponding author: Zhu Yan-Xu, zhuyx@bjut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFB0402800, 2017YFB0402803), the Construction of Teachers to 15 Top-Notch Youth Project, China (Grant No.3011000543115002), the Science and Technology Plan Project of Zhongshan Province, China (Grant No. 2014A2FC305), the State Key Laboratory of Electronic Thin Film and Integrated Devices, Zhongshan Branch Open Fund of China (Grant No. 412S0601), and the Natural Science Foundation of Beijing, China (Grant No. 4142005).
    [1]

    Gu W P, Hao Y, Zhang J C, Wang C, Feng Q, Ma X H 2009 Acta Phys. Sin. 58 511 (in Chinese) [谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华 2009 物理学报 58 511]

    [2]

    Hu W D, Chen X S, Quan Z J, Zhang M X, Huang Y, Xia C S, Lu W, Ye D P 2007 J. Appl. Phys. 102 034502

    [3]

    Zhou Z T, Guo L W, Xing Z G, Ding G J, Tan C L, L L, Liu J, Liu X Y, Jia H Q, Chen H, Zhou J M 2007 Acta Phys. Sin. 56 6013 (in Chinese) [周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕力, 刘建, 刘新宇, 贾海强, 陈弘, 周均铭 2007 物理学报 56 6013]

    [4]

    Zhou M, Li C Y, Zhao D G 2015 Chin. J. Lumin. 36 1034 (in Chinese) [周梅, 李春燕, 赵德刚 2015 发光学报 36 1034]

    [5]

    Matsunaga T, Hosokawa T, Umetani Y, Takayama R, Kanno I 2002 Phys. Rev. B 66 064102

    [6]

    Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 Appl. Phys. 87 334

    [7]

    Lin Z J, Lu W, Lee J 2003 Appl. Phys. Lett. 82 4364

    [8]

    Yu N, Wang H H, Liu F F, Du Z J, Wang Y H, Song H H, Zhu Y X, Sun J 2015 Chin. J. Lumin. 36 1178 (in Chinese) [于宁, 王红航, 刘飞飞, 杜志娟, 王岳华, 宋会会, 朱彦旭, 孙捷 2015 发光学报 36 1178]

    [9]

    Zheng K 2016 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinese) [郑坤 2016 硕士学位论文 (合肥: 合肥工业大学)]

    [10]

    Gao Q N, Zhu Y, Wang J G, Yang J H 2016 Proceedings of the 14th International Asia Confererece on Industrial Engineering and Management Innovation Tianjin, China, July 25-26, 2015 p297

    [11]

    Fu H, Yang L, Shang Z G, Yang Y P 2013 Electronics World Infrared Light Communication Device 18 116 (in Chinese) [付辉, 阳璐, 尚治国, 杨栎平 2013 电子世界 18 116]

    [12]

    Xu K, Xu C, Guo W, Xie Y Y 2016 Semicond. Photoelectr. 1 30 (in Chinese) [许坤, 徐晨, 郭旺, 解意洋 2016 半导体光电 1 30]

    [13]

    Zhang H B, Yao J D, Shao J M, Li H, Li S W, Bao D H, Wang C X, Yang G W 2014 Sci. Rep. 4 5876

    [14]

    Wang Z J, Chu J R, Maeda R, Kokawaa H 2002 Thin Solid Films 416 66

    [15]

    Zhu Y X, Wang Y H, Song H H, Li L L, Shi D 2016 Chin. J. Lumin. 37 1545 (in Chinese) [朱彦旭, 王岳华, 宋会会, 李莱龙, 石栋 2016 发光学报 37 1545]

    [16]

    Yang B, Liu X X, Li H 2015 Acta Phys. Sin. 64 038807 (in Chinese) [杨彪, 刘向鑫, 李辉 2015 物理学报 64 038807]

    [17]

    Frunza R, Ricinschi D, Gheorghiu F 2011 J. Alloys Compd. 509 6242

    [18]

    Li F 2015 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [李飞 2015 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [19]

    Li J H 2009 M. S. Thesis (Shanxi: North University of China) (in Chinese) [李珺泓 2009 硕士学位论文 (山西: 中北大学)]

    [20]

    Wang C, Zhang J C, Hao Y, Yang Y 2006 Chin. J. Semicond. 27 1436 (in Chinese) [王冲, 张进城, 郝跃, 杨燕 2006 半导体学报 27 1436]

    [21]

    Neamen D H (translated by Zhao Y Q, Yao S Y, Xie X D) 2010 Semiconductor Physics and Devices: Basic Principles (Beijing: Electronics Industry Press) p211, 212 (in Chinese) [尼曼 D H 著 (赵毅强, 姚素英, 解晓东 译) 2010 半导体物理与器件(北京: 电子工业出版社)第211, 212页]

    [22]

    Qiao H, Yuan J, Xu Z Q, Che C Y, Lin S H, Wang Y S, Song J C, Liu Y, Khan Q, Hoh H Y, Pan C X, Li S J, Bao Q L 2015 ACS Nano 9 1886

    [23]

    Liu Y H, Cao W, Li S J, Li Y, Sun S C, Fu K, Chen C Q, Zhang B S 2015 Chin. J. Lumin. 36 1167 (in Chinese) [刘翌寒, 曹伟, 李绍娟, 李洋, 孙世闯, 付凯, 陈长清, 张宝顺 2015 发光学报 36 1167]

    [24]

    Sun Q 2012 M. S. Thesis (Shanghai: East China Normal University) (in Chinese) [孙倩 2012 硕士学位论文 (上海: 华东师范大学)]

  • [1]

    Gu W P, Hao Y, Zhang J C, Wang C, Feng Q, Ma X H 2009 Acta Phys. Sin. 58 511 (in Chinese) [谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华 2009 物理学报 58 511]

    [2]

    Hu W D, Chen X S, Quan Z J, Zhang M X, Huang Y, Xia C S, Lu W, Ye D P 2007 J. Appl. Phys. 102 034502

    [3]

    Zhou Z T, Guo L W, Xing Z G, Ding G J, Tan C L, L L, Liu J, Liu X Y, Jia H Q, Chen H, Zhou J M 2007 Acta Phys. Sin. 56 6013 (in Chinese) [周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕力, 刘建, 刘新宇, 贾海强, 陈弘, 周均铭 2007 物理学报 56 6013]

    [4]

    Zhou M, Li C Y, Zhao D G 2015 Chin. J. Lumin. 36 1034 (in Chinese) [周梅, 李春燕, 赵德刚 2015 发光学报 36 1034]

    [5]

    Matsunaga T, Hosokawa T, Umetani Y, Takayama R, Kanno I 2002 Phys. Rev. B 66 064102

    [6]

    Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 Appl. Phys. 87 334

    [7]

    Lin Z J, Lu W, Lee J 2003 Appl. Phys. Lett. 82 4364

    [8]

    Yu N, Wang H H, Liu F F, Du Z J, Wang Y H, Song H H, Zhu Y X, Sun J 2015 Chin. J. Lumin. 36 1178 (in Chinese) [于宁, 王红航, 刘飞飞, 杜志娟, 王岳华, 宋会会, 朱彦旭, 孙捷 2015 发光学报 36 1178]

    [9]

    Zheng K 2016 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinese) [郑坤 2016 硕士学位论文 (合肥: 合肥工业大学)]

    [10]

    Gao Q N, Zhu Y, Wang J G, Yang J H 2016 Proceedings of the 14th International Asia Confererece on Industrial Engineering and Management Innovation Tianjin, China, July 25-26, 2015 p297

    [11]

    Fu H, Yang L, Shang Z G, Yang Y P 2013 Electronics World Infrared Light Communication Device 18 116 (in Chinese) [付辉, 阳璐, 尚治国, 杨栎平 2013 电子世界 18 116]

    [12]

    Xu K, Xu C, Guo W, Xie Y Y 2016 Semicond. Photoelectr. 1 30 (in Chinese) [许坤, 徐晨, 郭旺, 解意洋 2016 半导体光电 1 30]

    [13]

    Zhang H B, Yao J D, Shao J M, Li H, Li S W, Bao D H, Wang C X, Yang G W 2014 Sci. Rep. 4 5876

    [14]

    Wang Z J, Chu J R, Maeda R, Kokawaa H 2002 Thin Solid Films 416 66

    [15]

    Zhu Y X, Wang Y H, Song H H, Li L L, Shi D 2016 Chin. J. Lumin. 37 1545 (in Chinese) [朱彦旭, 王岳华, 宋会会, 李莱龙, 石栋 2016 发光学报 37 1545]

    [16]

    Yang B, Liu X X, Li H 2015 Acta Phys. Sin. 64 038807 (in Chinese) [杨彪, 刘向鑫, 李辉 2015 物理学报 64 038807]

    [17]

    Frunza R, Ricinschi D, Gheorghiu F 2011 J. Alloys Compd. 509 6242

    [18]

    Li F 2015 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [李飞 2015 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [19]

    Li J H 2009 M. S. Thesis (Shanxi: North University of China) (in Chinese) [李珺泓 2009 硕士学位论文 (山西: 中北大学)]

    [20]

    Wang C, Zhang J C, Hao Y, Yang Y 2006 Chin. J. Semicond. 27 1436 (in Chinese) [王冲, 张进城, 郝跃, 杨燕 2006 半导体学报 27 1436]

    [21]

    Neamen D H (translated by Zhao Y Q, Yao S Y, Xie X D) 2010 Semiconductor Physics and Devices: Basic Principles (Beijing: Electronics Industry Press) p211, 212 (in Chinese) [尼曼 D H 著 (赵毅强, 姚素英, 解晓东 译) 2010 半导体物理与器件(北京: 电子工业出版社)第211, 212页]

    [22]

    Qiao H, Yuan J, Xu Z Q, Che C Y, Lin S H, Wang Y S, Song J C, Liu Y, Khan Q, Hoh H Y, Pan C X, Li S J, Bao Q L 2015 ACS Nano 9 1886

    [23]

    Liu Y H, Cao W, Li S J, Li Y, Sun S C, Fu K, Chen C Q, Zhang B S 2015 Chin. J. Lumin. 36 1167 (in Chinese) [刘翌寒, 曹伟, 李绍娟, 李洋, 孙世闯, 付凯, 陈长清, 张宝顺 2015 发光学报 36 1167]

    [24]

    Sun Q 2012 M. S. Thesis (Shanghai: East China Normal University) (in Chinese) [孙倩 2012 硕士学位论文 (上海: 华东师范大学)]

  • [1] Lü Ling, Xing Mu-Han, Xue Bo-Rui, Cao Yan-Rong, Hu Pei-Pei, Zheng Xue-Feng, Ma Xiao-Hua, Hao Yue. Effect of heavy ion radiation on low frequency noise characteristics of AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] Liu Nai-Zhang, Yao Ruo-He, Geng Kui-Wei. Gate capacitance model of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [3] Dong Shi-Jian, Guo Hong-Xia, Ma Wu-Ying, Lv Ling, Pan Xiao-Yu, Lei Zhi-Feng, Yue Shao-Zhong, Hao Rui-Jing, Ju An-An, Zhong Xiang-Li, Ouyang Xiao-Ping. Ionizing radiation damage mechanism and biases correlation of AlGaN/GaN high electron mobility transistor devices. Acta Physica Sinica, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [4] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [5] Liu Jing, Wang Lin-Qian, Huang Zhong-Xiao. Current collapse suppression in AlGaN/GaN high electron mobility transistor with groove structure. Acta Physica Sinica, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [6] Liu Yan-Li, Wang Wei, Dong Yan, Chen Dun-Jun, Zhang Rong, Zheng You-Dou. Effect of structure parameters on performance of N-polar GaN/InAlN high electron mobility transistor. Acta Physica Sinica, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [7] Zhou Xing-Ye, Lv Yuan-Jie, Tan Xin, Wang Yuan-Gang, Song Xu-Bo, He Ze-Zhao, Zhang Zhi-Rong, Liu Qing-Bin, Han Ting-Ting, Fang Yu-Long, Feng Zhi-Hong. Mechanisms of trapping effects in short-gate GaN-based high electron mobility transistors with pulsed I-V measurement. Acta Physica Sinica, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [8] Guo Hai-Jun, Duan Bao-Xing, Yuan Song, Xie Shen-Long, Yang Yin-Tang. Characteristic analysis of new AlGaN/GaN high electron mobility transistor with a partial GaN cap layer. Acta Physica Sinica, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [9] Wang Kai, Xing Yan-Hui, Han Jun, Zhao Kang-Kang, Guo Li-Jian, Yu Bao-Ning, Deng Xu-Guang, Fan Ya-Ming, Zhang Bao-Shun. Growths of Fe-doped GaN high-resistivity buffer layers for AlGaN/GaN high electron mobility transistor devices. Acta Physica Sinica, 2016, 65(1): 016802. doi: 10.7498/aps.65.016802
    [10] Li Zhi-Peng, Li Jing, Sun Jing, Liu Yang, Fang Jin-Yong. High power microwave damage mechanism on high electron mobility transistor. Acta Physica Sinica, 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [11] Liu Yang, Chai Chang-Chun, Yu Xin-Hai, Fan Qing-Yang, Yang Yin-Tang, Xi Xiao-Wen, Liu Sheng-Bei. Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse. Acta Physica Sinica, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [12] Li Jia-Dong, Cheng Jun-Jie, Miao Bin, Wei Xiao-Wei, Zhang Zhi-Qiang, Li Hai-Wen, Wu Dong-Min. Research on biomolecule-gate AlGaN/GaN high-electron-mobility transistor biosensors. Acta Physica Sinica, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [13] Ren Jian, Yan Da-Wei, Gu Xiao-Feng. Degradation mechanism of leakage current in AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [14] Ma Ji-Gang, Ma Xiao-Hua, Zhang Hui-Long, Cao Meng-Yi, Zhang Kai, Li Wen-Wen, Guo Xing, Liao Xue-Yang, Chen Wei-Wei, Hao Yue. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [15] Shao Qing-Sheng, Liu Shi-Yu, Zhao Hui, Yu Da-Shu, Cao Mao-Sheng. First-principles study of structural stability and electronic properties of rhombohedral and tetragonal PbZr0.5Ti0.5O3. Acta Physica Sinica, 2012, 61(4): 047103. doi: 10.7498/aps.61.047103
    [16] Wang Chong, Quan Si, Ma Xiao-Hua, Hao Yue, Zhang Jin-Cheng, Mao Wei. High temperature annealing of enhancement-mode AlGaN/GaN high-electron-mobility transistors. Acta Physica Sinica, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [17] Zhao Xiao-Ying, Liu Shi-Jian, Chu Jun-Hao, Dai Ning, Hu Gu-Jin. Ferroelectric and optical properties of Pb(ZrxTi1-x)O3 bilayers. Acta Physica Sinica, 2008, 57(9): 5968-5972. doi: 10.7498/aps.57.5968
    [18] Li Xiao, Zhang Hai-Ying, Yin Jun-Jian, Liu Liang, Xu Jing-Bo, Li Ming, Ye Tian-Chun, Gong Min. Research of breakdown characteristic of InP composite channel HEMT. Acta Physica Sinica, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [19] Li Xiao, Liu Liang, Zhang Hai-Ying, Yin Jun-Jian, Li Hai-Ou, Ye Tian-Chun, Gong Min. A new small signal physical model of InP-based composite channel high electron mobility transistor. Acta Physica Sinica, 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
    [20] Lv YONG-LIANG, ZHOU SHI-PING, XU DE-MING. ANALYSIS OF PROPERTIES OF HIGH-ELECTRON-MOBILITY-TRANSISTOR UNDER OPTICAL ILLUMI NATION. Acta Physica Sinica, 2000, 49(7): 1394-1399. doi: 10.7498/aps.49.1394
Metrics
  • Abstract views:  5144
  • PDF Downloads:  168
  • Cited By: 0
Publishing process
  • Received Date:  26 June 2017
  • Accepted Date:  14 September 2017
  • Published Online:  05 December 2017

/

返回文章
返回