Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical and experimental study of average reflection optical path length of diffuse cubic cavity

Zhang Yun-Gang Liu Ru-Hui Wang Mei-Ting Wang Yun-Xuan Li Zhan-Xun Tong Kai

Citation:

Theoretical and experimental study of average reflection optical path length of diffuse cubic cavity

Zhang Yun-Gang, Liu Ru-Hui, Wang Mei-Ting, Wang Yun-Xuan, Li Zhan-Xun, Tong Kai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The most direct and efficient method to improve the sensitivity of gas sensor is to increase the effective optical path length (Leff) of gas cell according to the Beer-Lambert law. Moreover through experimental research and analysis, the diffuse cubic cavity, as a kind of gas cell, can effectively increase the value of Leff, which is crucial to the study of the reflection law of light in the diffuse cubic cavity. Based on the analysis of the reflection law of light in the diffuse cubic cavity, the theoretical value of the single reflection average optical path length (Lave) is obtained, the theoretical approximation model of the light reflection in the diffuse cubic cavity is established, and the simulation values are obtained by the finite element method. The tunable diode laser absorption spectroscopy (TDLAS) is a perferred gas dection technique with high selectivity, fast response and non-contact measuring. We develop diffuse cubic cavities of different sizes and study the reflection law and characteristics of the light in the cavities. We obtain the Leff values of the cubic cavities using TDLAS, with that and the theoretical formula between Leff and Lave, which in relation to the side length a, the diffuse reflectivity of coating and port fraction f, the experimental values of the Lave are obtained. The accuracies and stabilities of the theoretical approximation model and the simulation results by the finite element method are verified. According to the relationship between the Lave and the number of reflections established by the finite element method, the relative errors between the simulation values and the theoretical values of Lave are less than 3.6%, when each inner surface of the diffuse cubic cavity is divided into 10001000 or more small patches. It shows that the finite element method has a satisfactory effect on the cubic cavities with different sizes, and the error range is less than 0.1%. The TDLAS is used to measure the Leff values of three different cubic cavities with side lengths of 5 cm, 8 cm, and 12 cm, and the corresponding experimental values of the Lave are calculated indirectly. A comparison among the theoretical values, simulation values and experimentical values of the Lave, shows that these three values are well consistent with each other, which indicates that the simulation of the reflection law of light in the diffuse reflection cubic cavity has a significant reference value for the experimental study. Also, the present study of the diffuse cubic cavity will provide a technical support for studying the diffuse cavity of arbitrary shape in the future.
      Corresponding author: Liu Ru-Hui, liuruhuizjk@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61308065) and the Natural Science Foundation of Hebei Province, China (Grant No. E2015203014).
    [1]

    Tang G H, Xu C L, Shao L T, Wang S M 2008 Chin. J. Sci. Instru. 29 244(in Chinese) [汤光华, 许传龙, 邵礼堂, 王式民 2008 仪器仪表学报 29 244]

    [2]

    Yu M J, Liu M H, Dong Z R, Sun Y G, Cai H W, Wei F 2015 Chin. J. Laser 42 351(in Chinese) [郁敏捷, 刘铭晖, 董作人, 孙延光, 蔡海文, 魏芳 2015 中国激光 42 351]

    [3]

    Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Wang Y, Liu W Q 2015 Chin. Opt. Lett. 35 337(in Chinese) [刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清 2015 光学学报 35 337]

    [4]

    Liang H Z, Zhang X, Rao J, Chen H W 2008 Chin. J. Biotechnol. 28 124(in Chinese) [梁华正, 张燮, 饶军, 陈焕文 2008 中国生物工程杂志 28 124]

    [5]

    D'Amico A, Pennazza G, Santonico M, Martinelli E, Roscioni C, Galluccio G, Paolesse R, Natale C D 2010 Lung Cancer 68 170

    [6]

    Teh S K, Zheng W, Ho K Y, Teh M, Yeoh K G, Huang Z W 2010 Int. J. Cancer 126 1920

    [7]

    Yang X B, Zhao W X, Tao L, Gao X M, Zhang W J 2010 Acta Phys. Sin. 59 5154(in Chinese) [杨西斌, 赵卫雄, 陶玲, 高晓明, 张为俊 2010 物理学报 59 5154]

    [8]

    Hu R Z, Wang D, Xie P H, Ling L Y, Qin M, Li C X, Liu J G 2014 Acta Phys. Sin. 63 110707(in Chinese) [胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国 2014 物理学报 63 110707]

    [9]

    Sjoholm M, Somesfalean G, Alnis J, Andersson-Engels S, Svanberg S 2011 Opt. Lett. 26 16

    [10]

    Tranchart S, Bachir I H, Destombes J L 1996 Appl. Opt. 35 7070

    [11]

    Lucke R L 2007 Appl. Opt. 46 6966

    [12]

    Hwang J, Shin D J, Jeong K R 2016 Metrologia 53 1231

    [13]

    Fukutomi D, Ishii K, Awazu K 2015 Lasers Med. Sci. 30 1335

    [14]

    Lackner M 2007 Rev. Chem. Eng. 23 65

    [15]

    Wang F, Cen K F, Li N, Jeffries J B, Huang Q X, Yan J H, Chi Y 2010 Meas. Sci. Technol. 21 45301

    [16]

    Gao Y W, Zhang Y J, Chen D, He Y, You K, Chen C, Liu W Q 2016 Chin. Opt. Lett. 36 275(in Chinese) [高彦伟, 张玉钧, 陈东, 何莹, 尤坤, 陈晨, 刘文清 2016 光学学报 36 275]

    [17]

    Zhou X, Yu J, Wang L, Gao Q, Zhang Z G 2017 Sens. Actuators B: Chem. 241 1076

    [18]

    Gao G Z, Cai T D, Hu B, Jia T J 2015 Spectrosc. Spect. Anal. 35 34(in Chinese) [高光珍, 蔡廷栋, 胡波, 贾天俊 2015 光谱学与光谱分析 35 34]

    [19]

    Yu J, Zheng F, Gao Q, Li Y J, Zhang Y G, Zhang Z G, Wu S H 2014 Appl. Phys.. 116 135

    [20]

    Fry E S, Musser J, Kattawar G W, Zhai P W 2006 Appl. Opt. 45 9053

    [21]

    Manojlovic L M, Marincic A S 2011 Meas. Sci. Technol. 22 075303

    [22]

    Yu J 2014 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [虞佳 2014 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [23]

    Yu J, Zhang Y G, Gao Q, Hu G, Zhang Z G, Wu S H 2014 Opt. Lett. 39 1941

    [24]

    Yu J, Gao Q, Zhang Y G, Zhang Z G, Wu S H 2014 J. Opt. 16 125708

  • [1]

    Tang G H, Xu C L, Shao L T, Wang S M 2008 Chin. J. Sci. Instru. 29 244(in Chinese) [汤光华, 许传龙, 邵礼堂, 王式民 2008 仪器仪表学报 29 244]

    [2]

    Yu M J, Liu M H, Dong Z R, Sun Y G, Cai H W, Wei F 2015 Chin. J. Laser 42 351(in Chinese) [郁敏捷, 刘铭晖, 董作人, 孙延光, 蔡海文, 魏芳 2015 中国激光 42 351]

    [3]

    Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Wang Y, Liu W Q 2015 Chin. Opt. Lett. 35 337(in Chinese) [刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清 2015 光学学报 35 337]

    [4]

    Liang H Z, Zhang X, Rao J, Chen H W 2008 Chin. J. Biotechnol. 28 124(in Chinese) [梁华正, 张燮, 饶军, 陈焕文 2008 中国生物工程杂志 28 124]

    [5]

    D'Amico A, Pennazza G, Santonico M, Martinelli E, Roscioni C, Galluccio G, Paolesse R, Natale C D 2010 Lung Cancer 68 170

    [6]

    Teh S K, Zheng W, Ho K Y, Teh M, Yeoh K G, Huang Z W 2010 Int. J. Cancer 126 1920

    [7]

    Yang X B, Zhao W X, Tao L, Gao X M, Zhang W J 2010 Acta Phys. Sin. 59 5154(in Chinese) [杨西斌, 赵卫雄, 陶玲, 高晓明, 张为俊 2010 物理学报 59 5154]

    [8]

    Hu R Z, Wang D, Xie P H, Ling L Y, Qin M, Li C X, Liu J G 2014 Acta Phys. Sin. 63 110707(in Chinese) [胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国 2014 物理学报 63 110707]

    [9]

    Sjoholm M, Somesfalean G, Alnis J, Andersson-Engels S, Svanberg S 2011 Opt. Lett. 26 16

    [10]

    Tranchart S, Bachir I H, Destombes J L 1996 Appl. Opt. 35 7070

    [11]

    Lucke R L 2007 Appl. Opt. 46 6966

    [12]

    Hwang J, Shin D J, Jeong K R 2016 Metrologia 53 1231

    [13]

    Fukutomi D, Ishii K, Awazu K 2015 Lasers Med. Sci. 30 1335

    [14]

    Lackner M 2007 Rev. Chem. Eng. 23 65

    [15]

    Wang F, Cen K F, Li N, Jeffries J B, Huang Q X, Yan J H, Chi Y 2010 Meas. Sci. Technol. 21 45301

    [16]

    Gao Y W, Zhang Y J, Chen D, He Y, You K, Chen C, Liu W Q 2016 Chin. Opt. Lett. 36 275(in Chinese) [高彦伟, 张玉钧, 陈东, 何莹, 尤坤, 陈晨, 刘文清 2016 光学学报 36 275]

    [17]

    Zhou X, Yu J, Wang L, Gao Q, Zhang Z G 2017 Sens. Actuators B: Chem. 241 1076

    [18]

    Gao G Z, Cai T D, Hu B, Jia T J 2015 Spectrosc. Spect. Anal. 35 34(in Chinese) [高光珍, 蔡廷栋, 胡波, 贾天俊 2015 光谱学与光谱分析 35 34]

    [19]

    Yu J, Zheng F, Gao Q, Li Y J, Zhang Y G, Zhang Z G, Wu S H 2014 Appl. Phys.. 116 135

    [20]

    Fry E S, Musser J, Kattawar G W, Zhai P W 2006 Appl. Opt. 45 9053

    [21]

    Manojlovic L M, Marincic A S 2011 Meas. Sci. Technol. 22 075303

    [22]

    Yu J 2014 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [虞佳 2014 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [23]

    Yu J, Zhang Y G, Gao Q, Hu G, Zhang Z G, Wu S H 2014 Opt. Lett. 39 1941

    [24]

    Yu J, Gao Q, Zhang Y G, Zhang Z G, Wu S H 2014 J. Opt. 16 125708

  • [1] Zhao Shu-Yu, Xu Bin-Bin, Zhao Zhen-Yu, Lü Xue-Qin. Influence of top mirror on performance of GaN-based resonant cavity light-emitting diode. Acta Physica Sinica, 2022, 71(4): 047801. doi: 10.7498/aps.71.20211720
    [2] Tao Meng-Meng, Wang Ya-Min, Wu Hao-Long, Li Guo-Hua, Wang Sheng, Tao Bo, Ye Jing-Feng, Feng Guo-Bin, Ye Xi-Sheng, Chen Wei-Biao. Hyperspectral absorption of water around 2 μm based on a boradband tunable, narrow linewidth Tm-doped fiber laser. Acta Physica Sinica, 2022, 71(11): 114203. doi: 10.7498/aps.71.20212127
    [3] Zhang Ming-Ke, Gao Zhen-Wei, Gao Guang-Zhen, Jiang Yu-Hao, Cai Ting-Dong. Simultaneous detection of particle and C2H2 at high temperature using tunable diode laser extinction spectroscopy. Acta Physica Sinica, 2022, 71(19): 193301. doi: 10.7498/aps.71.20220866
    [4] Study on the effect of top mirror on the performance of GaN-based resonant cavity light-emitting diode. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211720
    [5] Wang Qian-Jin, Sun Peng-Shuai, Zhang Zhi-Rong, Zhang Le-Wen, Yang Xi, Wu Bian, Pang Tao, Xia Hua, Li Qi-Yong. Separation and analysis method of overlapping absorption spectra with cross interference in gas mixture measurement. Acta Physica Sinica, 2021, 70(14): 144203. doi: 10.7498/aps.70.20210286
    [6] Tao Meng-Meng, Tao Bo, Ye Jing-Feng, Shen Yan-Long, Huang Ke, Ye Xi-Sheng, Zhao Jun. Linewidth compression of tunable Tm-doped fiber laser and its hyperspectral absorption application. Acta Physica Sinica, 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [7] Guan Lin-Qiang, Deng Hao, Yao Lu, Nie Wei, Xu Zhen-Yu, Li Xiang, Zang Yi-Peng, Hu Mai, Fan Xue-Li, Yang Chen-Guang, Kan Rui-Feng. Measurement of middle infrared spectroscopic parameters of carbon disulfide based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [8] Cao Ya-Nan, Wang Gui-Shi, Tan Tu, Wang Lei, Mei Jiao-Xu, Cai Ting-Dong, Gao Xiao-Ming. Concentration and pressure measurement of water vapor in sealed glass containers based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [9] Mao Ye-Fei, Zhang Heng-Li, Xu Liu, Deng Bo, Sang Si-Han, He Jing-Liang, Xing Ji-Chuan, Xin Jian-Guo, Jiang Yi. Laser diode double-end-direct-pumped slab laser with hybrid resonator. Acta Physica Sinica, 2015, 64(1): 014203. doi: 10.7498/aps.64.014203
    [10] Wang Min-Rui, Cai Ting-Dong. Theoretical and experimental study on line intensities of CO2 and CO transitions near 1.5 μm at high temperatures. Acta Physica Sinica, 2015, 64(21): 213301. doi: 10.7498/aps.64.213301
    [11] Hu Ren-Zhi, Wang Dan, Xie Pin-Hua, Ling Liu-Yi, Qin Min, Li Chuan-Xin, Liu Jian-Guo. Diode laser cavity ring-down spectroscopy for atmospheric NO3 radical measurement. Acta Physica Sinica, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [12] Lan Li-Juan, Ding Yan-Jun, Jia Jun-Wei, Du Yan-Jun, Peng Zhi-Min. Theoretical and experimental study of measuring gas temperature in vacuum environment using tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [13] Zhang Zhi-Rong, Wu Bian, Xia Hua, Pang Tao, Wang Gao-Xuan, Sun Peng-Shuai, Dong Feng-Zhong, Wang Yu. Study on the temperature modified method for monitoring gas concentrations with tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [14] Zhao Min-Jie, Si Fu-Qi, Lu Yi-Huai, Wang Shi-Mei, Jiang Yu, Zhou Hai-Jin, Liu Wen-Qing. Experimental measurement of aluminium diffuser applied to calibration system of space-borne differential optical absorption spectrometer. Acta Physica Sinica, 2013, 62(24): 249301. doi: 10.7498/aps.62.249301
    [15] Wang Rui, Wang Yu-Shan. Sensitivity of Delta-P1 approximation model to second-order parameter. Acta Physica Sinica, 2012, 61(18): 184202. doi: 10.7498/aps.61.184202
    [16] Song Jun-Ling, Hong Yan-Ji, Wang Guang-Yu, Pan Hu. Two-dimensional reconstructions of gas temperature and concentration in combustion based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(24): 240702. doi: 10.7498/aps.61.240702
    [17] Tang Yi-Dan, Shen Guang-Di, Guo Xia, Guan Bao-Lu, Jiang Wen-Jing, Han Jin-Ru. High performance resonant cavity light emitting diode with dielectric distributed Bragg reflectors. Acta Physica Sinica, 2012, 61(1): 018503. doi: 10.7498/aps.61.018503
    [18] Dong Ya-Juan, Zhang Jun-Bing, Chen Hai-Tao, Zeng Xiang-Hua. Performance of power omnidirectimal reflector LED. Acta Physica Sinica, 2011, 60(7): 077803. doi: 10.7498/aps.60.077803
    [19] Zhang Jian-Ming, Zou De-Shu, Liu Si-Nan, Xu Chen, Shen Guang-Di. A novel AlGaInP thin-film light emitting diode with omni directional reflector. Acta Physica Sinica, 2007, 56(5): 2905-2909. doi: 10.7498/aps.56.2905
    [20] Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Liu Jian-Guo, Dong Feng-Zhong, Gao Shan-Hu, Wang Min, Chen Jun. Absorption measurements of ambient methane with tunable diode laser. Acta Physica Sinica, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
Metrics
  • Abstract views:  4521
  • PDF Downloads:  152
  • Cited By: 0
Publishing process
  • Received Date:  09 August 2017
  • Accepted Date:  09 October 2017
  • Published Online:  05 January 2018

/

返回文章
返回