Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparative demonstration of multimode steady-state theory for the gyrotron traveling-wave tube based on a distributed loss-loaded metal cylindrical waveguide

Luo Ji-Run Tang Yan-Na Fan Yu Peng Shu-Yuan Xue Qian-Zhong

Citation:

Comparative demonstration of multimode steady-state theory for the gyrotron traveling-wave tube based on a distributed loss-loaded metal cylindrical waveguide

Luo Ji-Run, Tang Yan-Na, Fan Yu, Peng Shu-Yuan, Xue Qian-Zhong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Gyrotron traveling-wave tube (gyro-TWT) is capable of generating high-power microwave radiation in a millimeter wave range. It is one of the most promising candidates for the applications in the millimeter wave radar, communication systems, and environmental monitoring. The gyro-TWT can work at high frequency and produce high power output with high order modes. Although the high mode gyro-TWT can work at high frequency and produce high power output, the instability problem is a main factor to prevent the gyro-TWT performance from further improving and hinder this device from being put into the practical application. The earlier research of the instability primarily concentrated on the single-mode situation, which cannot be used to analyze the mutual effects between the other oscillation modes and the operating mode. Hence, it is important for academic study and engineering application to solve the mode competition problem. In this paper, based on lossy uniform/periodic dielectric-loaded metal cylindrical waveguide usually used in the international academic analysis and engineering research, a multimode steady-state beam wave interaction theory for gyro-TWT is established, which can consider the mutual effects between the other oscillation modes and the operating mode. As application examples, under the same condition of geometrical and electrical parameters, the theoretical results of the beam wave interaction for the TE01 fundamental mode gyro-TWTs are compared with the experimental results reported by NRL and IECAS for Ka band and those simulated with Magic code for W band in order to demonstrate the rationality of the theory. The results show that the theoretical results are in good agreement with the experimental and simulated ones. For the NRL design, when the velocity spread is 9.6%, the maximum output power from the theory is 127 kW at 34.09 GHz with a gain of 47.4 dB, an efficiency of 17.6%, and a -3 dB bandwidth of 1.01 GHz, and an NRL measured maximum output power is 130 kW at 34 GHz with a gain of 47.5 dB, an efficiency of 18% and a -3 dB bandwidth of 1.0 GHz. The maximum difference between the theory and the experiments occurs near the frequency of 34 GHz, the measured power by NRL is 127 kW and the calculated power is 118 kW, the relative error between the theory and the experiment is 8.5%. For the IECAS design, the simulated maximum output power from the theory is 113.73 kW at 33.85 GHz with a -3 dB bandwidth of 1.72 GHz when the velocity spread is 7%. The measured peak output power by IECAS is 110 kW at 33.88 GHz with a -3 dB bandwidth of 1.75 GHz. For a W band TE01 fundamental mode gyro-TWT design, the saturated output power is 112 kW at a frequency of 94.5 GHz with a gain of 34.28 dB and -3 dB bandwidth of about 4.1 GHz, and the saturated output power calculated with Magic code is 106.7 kW with a gain of 34.11 dB and 3 dB bandwidth of 3.9 GHz, the maximum relative errors between the theory and experiment are both about 5% for the output power and the bandwidth.
      Corresponding author: Luo Ji-Run, luojirun@mail.ie.ac.cn
    [1]

    Luce T C 2002 IEEE Trans. Plasma Sci. 30 734

    [2]

    Kalaria P C, Kartikeyan M V, Thumm M 2014 IEEE Trans. Plasma Sci. 42 1522

    [3]

    Thumm M 2005 Int. J. Infr. Millim. Waves 26 483

    [4]

    Chu K R 2004 Rev. Mod. Phys. 76 489

    [5]

    Thumm M 2016 State-of-the-Art of High Power gyro-Devices and Free Electron Masers. Update 2015 (KIT Scientific Reports; 7717. Karlsruhe (Germany: Wissenschaftliche Berichte FZKA)

    [6]

    Bratman V, Glyavin M, Idehara T, Kalynov Y, Luchinin Y, Manuilov A, Mitsudo S, Ogawa I, Saito T, Tatematsu Y, Zapevalov V 2009 IEEE Trans. Plasma Sci. 37 36

    [7]

    Flyagin V A, Gaponov A V, Petelin M I, Yulpatov V K 1977 IEEE Trans. Microwave Theory and Techniques. 25 514

    [8]

    Parker R K, Abrams R H, Danly B G, Levush B 2002 IEEE Trans. Microwave Theory and Techniques 50 835

    [9]

    Granatstein V L, Parker R K, Armstrong C M 1999 Proc. IEEE 87 702

    [10]

    Chu K R 2002 IEEE Trans. Plasma Sci. 30 903

    [11]

    Calame J P, Garven M, Danly B G, Levush B, Nguyen K T 2002 IEEE Trans. Electron Dev. 49 1469

    [12]

    Nusinovich G S 1999 IEEE Trans. Plasma Sci. 27 313

    [13]

    Park G S, Choi J J, Park S Y, Armstrong C M, Ganguly A K 1995 Phys. Rev. Lett. 74 2399

    [14]

    Sirigiri J R, Shapiro M A, Temkin R J 2003 Phys. Rev. Lett. 90 258

    [15]

    Thottappan M, Singh S, Jain P K 2016 IEEE Trans. Electron Dev. 63 2118

    [16]

    Denisov G G, Bratman V L, Phelps A, Samsonov S V 1998 IEEE Trans. Plasma Sci. 26 508

    [17]

    Samsonov S V, Gachev I G, Denisov G G, Bogdashov A A, Mishakin S V, Fiks A S, Soluyanova E A, Tai E M, Dominyuk Y V, Levitan B A, Murzin V N 2014 IEEE Trans. Electron Dev. 61 4264

    [18]

    Chu K R, Barnett L R, Chen H Y, Chen S H, Wang C 1995 Phys. Rev. Lett. 74 1103

    [19]

    Chu K R, Chang T H, Barnett L R, Che S H 1999 IEEE Trans. Plasma Sci. 27 391

    [20]

    Yan R, Tang Y, Luo Y 2014 IEEE Trans. Electron Dev. 61 2564

    [21]

    Caplan M, Lin A T, Chu K R 1982 Int. J. Electron. 53 659

    [22]

    Chu K R, Barnett L R, Lau W K, Chang L H, Lin A T, Lin C C 1991 Phys. Fluids B: Plasma Phys 3 2403

    [23]

    Latham P E, Nusinovich G S 1995 Phys. Plasmas 2 3494

    [24]

    Latham P E, Nusinovich G S 1995 Phys. Plasmas 2 3511

    [25]

    Nusinovich G S, Walter M, Zhao J 1998 Phys. Rev.. 58 6594

    [26]

    Peng S, Wang Q, Luo J, Zhang Z 2014 Acta Phys. Sin. 63 207401

    [27]

    Tang Y, Luo J, Xue Q, Fan Y, Wang X, Peng S, Li S 2017 IEEE Trans. Electron Dev. 64 543

    [28]

    Harrington R F 1961 Time Harmonic Electromagnetic Fields (New York: McGraw-Hill)

    [29]

    Pozar D M 1998 Microwave Engineering (New York: Wiley)

    [30]

    Tigelis I G, Vomvoridis J L, Tzima S 1998 IEEE Trans. Plasma. Sci. 26 922

    [31]

    Tang Y, Luo Y, Xu Y, Yan R 2014 J. Infr. Millim. THz Waves 35 799

    [32]

    Xue Q Z, Du C H, Liu P K, Zhang S C 2012 Proc. IEEE IVEC. 421

  • [1]

    Luce T C 2002 IEEE Trans. Plasma Sci. 30 734

    [2]

    Kalaria P C, Kartikeyan M V, Thumm M 2014 IEEE Trans. Plasma Sci. 42 1522

    [3]

    Thumm M 2005 Int. J. Infr. Millim. Waves 26 483

    [4]

    Chu K R 2004 Rev. Mod. Phys. 76 489

    [5]

    Thumm M 2016 State-of-the-Art of High Power gyro-Devices and Free Electron Masers. Update 2015 (KIT Scientific Reports; 7717. Karlsruhe (Germany: Wissenschaftliche Berichte FZKA)

    [6]

    Bratman V, Glyavin M, Idehara T, Kalynov Y, Luchinin Y, Manuilov A, Mitsudo S, Ogawa I, Saito T, Tatematsu Y, Zapevalov V 2009 IEEE Trans. Plasma Sci. 37 36

    [7]

    Flyagin V A, Gaponov A V, Petelin M I, Yulpatov V K 1977 IEEE Trans. Microwave Theory and Techniques. 25 514

    [8]

    Parker R K, Abrams R H, Danly B G, Levush B 2002 IEEE Trans. Microwave Theory and Techniques 50 835

    [9]

    Granatstein V L, Parker R K, Armstrong C M 1999 Proc. IEEE 87 702

    [10]

    Chu K R 2002 IEEE Trans. Plasma Sci. 30 903

    [11]

    Calame J P, Garven M, Danly B G, Levush B, Nguyen K T 2002 IEEE Trans. Electron Dev. 49 1469

    [12]

    Nusinovich G S 1999 IEEE Trans. Plasma Sci. 27 313

    [13]

    Park G S, Choi J J, Park S Y, Armstrong C M, Ganguly A K 1995 Phys. Rev. Lett. 74 2399

    [14]

    Sirigiri J R, Shapiro M A, Temkin R J 2003 Phys. Rev. Lett. 90 258

    [15]

    Thottappan M, Singh S, Jain P K 2016 IEEE Trans. Electron Dev. 63 2118

    [16]

    Denisov G G, Bratman V L, Phelps A, Samsonov S V 1998 IEEE Trans. Plasma Sci. 26 508

    [17]

    Samsonov S V, Gachev I G, Denisov G G, Bogdashov A A, Mishakin S V, Fiks A S, Soluyanova E A, Tai E M, Dominyuk Y V, Levitan B A, Murzin V N 2014 IEEE Trans. Electron Dev. 61 4264

    [18]

    Chu K R, Barnett L R, Chen H Y, Chen S H, Wang C 1995 Phys. Rev. Lett. 74 1103

    [19]

    Chu K R, Chang T H, Barnett L R, Che S H 1999 IEEE Trans. Plasma Sci. 27 391

    [20]

    Yan R, Tang Y, Luo Y 2014 IEEE Trans. Electron Dev. 61 2564

    [21]

    Caplan M, Lin A T, Chu K R 1982 Int. J. Electron. 53 659

    [22]

    Chu K R, Barnett L R, Lau W K, Chang L H, Lin A T, Lin C C 1991 Phys. Fluids B: Plasma Phys 3 2403

    [23]

    Latham P E, Nusinovich G S 1995 Phys. Plasmas 2 3494

    [24]

    Latham P E, Nusinovich G S 1995 Phys. Plasmas 2 3511

    [25]

    Nusinovich G S, Walter M, Zhao J 1998 Phys. Rev.. 58 6594

    [26]

    Peng S, Wang Q, Luo J, Zhang Z 2014 Acta Phys. Sin. 63 207401

    [27]

    Tang Y, Luo J, Xue Q, Fan Y, Wang X, Peng S, Li S 2017 IEEE Trans. Electron Dev. 64 543

    [28]

    Harrington R F 1961 Time Harmonic Electromagnetic Fields (New York: McGraw-Hill)

    [29]

    Pozar D M 1998 Microwave Engineering (New York: Wiley)

    [30]

    Tigelis I G, Vomvoridis J L, Tzima S 1998 IEEE Trans. Plasma. Sci. 26 922

    [31]

    Tang Y, Luo Y, Xu Y, Yan R 2014 J. Infr. Millim. THz Waves 35 799

    [32]

    Xue Q Z, Du C H, Liu P K, Zhang S C 2012 Proc. IEEE IVEC. 421

  • [1] Zeng Zao-Jin, Ma Qiao-Sheng, Hu Lin-Lin, Jiang Yi, Hu Peng, Chen Hong-Bin. Theoretical analysis and design of G-band extended interaction klystron amplifier. Acta Physica Sinica, 2019, 68(15): 154102. doi: 10.7498/aps.68.20190264
    [2] Zeng Zao-Jin, Ma Qiao-Sheng, Hu Lin-Lin, Jiang Yi, Hu Peng, Lei Wen-Qiang, Ma Guo-Wu, Chen Hong-Bin. Theoretical analysis and simulation of W-band sheet beam extended interaction klystron amplifier. Acta Physica Sinica, 2019, 68(24): 248401. doi: 10.7498/aps.68.20190907
    [3] Yan Sheng-Mei, Su Wei, Wang Ya-Jun, Xu Ao, Chen Zhang, Jin Da-Zhi, Xiang Wei. Theoretical and simulation study of 0.14 THz fundamental mode multi-beam folded waveguide traveling wave tube. Acta Physica Sinica, 2014, 63(23): 238404. doi: 10.7498/aps.63.238404
    [4] Peng Shu-Yuan, Wang Qiu-Shi, Zhang Zhao-Chuan, Luo Ji-Run. Multimode steady-state theory for Gyro-TWT and simulation of mode competition. Acta Physica Sinica, 2014, 63(20): 208401. doi: 10.7498/aps.63.208401
    [5] Yan Wei-Zhong, Hu Yu-Lu, Li Jian-Qing, Yang Zhong-Hai, Tian Yun-Xian, Li Bin. Research on the beam-wave interaction theory of folded waveguide traveling wave tubes based on three-port network model. Acta Physica Sinica, 2014, 63(23): 238403. doi: 10.7498/aps.63.238403
    [6] Xue Zhi-Hao, Liu Pu-Kun, Du Chao-Hai. Research on non-linear beam-wave interaction of W-band Gyro-TWT with helical waveguide. Acta Physica Sinica, 2014, 63(8): 080201. doi: 10.7498/aps.63.080201
    [7] Chen Ye, Zhao Ding, Wang Yong. Study on the interaction between a sheet electron beam and the slow-wave structure for dielectric-loaded rectangular Cerenkov maser. Acta Physica Sinica, 2012, 61(9): 094102. doi: 10.7498/aps.61.094102
    [8] Bai Chun-Jiang, Li Jian-Qing, Hu Yu-Lu, Yang Zhong-Hai, Li Bin. Calculation of beam-wave interaction of coupled-cavity TWT using equivalent circuit model. Acta Physica Sinica, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [9] Xue Zhi-Hao, Liu Pu-Kun, Du Chao-Hai, Li Zheng-Di. Research on non-linear beam-wave interaction of W-band gyro-TWT with helical waveguide. Acta Physica Sinica, 2012, 61(17): 170201. doi: 10.7498/aps.61.170201
    [10] Guo Jian-Hua, Yu Sheng, Li Hong-Fu, Zhang Tian-Zhong, Lei Chao-Jun, Li Xiang, Zhang Yan-Yan. Transient nonlinear theory and model of beam-wave interaction for gyroklystron. Acta Physica Sinica, 2011, 60(9): 090301. doi: 10.7498/aps.60.090301
    [11] Zhang Xiao-Feng, Ruan Cun-Jun, Luo Ji-Run, Ruan Wang, Zhao Ding. Beam-wave interaction and simulation program for sheet beam klystron. Acta Physica Sinica, 2011, 60(6): 068402. doi: 10.7498/aps.60.068402
    [12] He Jun, Wei Yan-Yu, Gong Yu-Bin, Duan Zhao-Yun, Lu Zhi-Gang, Wang Wen-Xiang. Linear theory of the beam-wave interaction in a ridge-loaded folded slow-wave structure. Acta Physica Sinica, 2010, 59(9): 6659-6665. doi: 10.7498/aps.59.6659
    [13] Du Chao-Hai, Liu Pu-Kun, Xue Qian-Zhong. Beam-wave interaction analysis of gyrotron-traveling-wave tube based on a lossy dielectric-lined waveguide. Acta Physica Sinica, 2010, 59(7): 4612-4619. doi: 10.7498/aps.59.4612
    [14] Peng Wei-Feng, Hu Yu-Lu, Yang Zhong-Hai, Li Jian-Qing, Lu Qi-Ru, Li Bin. A time-dependent theory for helix traveling wave tubes in beam-wave interaction. Acta Physica Sinica, 2010, 59(12): 8478-8483. doi: 10.7498/aps.59.8478
    [15] Hao Bao-Liang, Xiao Liu, Liu Pu-Kun, Li Guo-Chao, Jiang Yong, Yi Hong-Xia, Zhou Wei. Calculations of three-dimensional frequency-domain nonlinear beam-wave reaction for helix traveling wave tubes. Acta Physica Sinica, 2009, 58(5): 3118-3124. doi: 10.7498/aps.58.3118
    [16] Sun Hai-Yan, Jiao Chong-Qing, Luo Ji-Run. Influence of reflection of the output port on beam-wave interaction in gyrotron traveling wave amplifier. Acta Physica Sinica, 2009, 58(2): 925-929. doi: 10.7498/aps.58.925
    [17] Hu Yu-Lu, Yang Zhong-Hai, Li Jian-Qing, Li Bin, Gao Peng, Jin Xiao-Lin. Theoretical model and numerical simulation of three-dimensional multifrequency interaction of helix traveling wave tubes. Acta Physica Sinica, 2009, 58(9): 6665-6670. doi: 10.7498/aps.58.6665
    [18] Zhao Ding, Ding Yao-Gen, Wang Yong. Research on 2.5-dimensional nonlinear beam-wave interaction program of klystrons. Acta Physica Sinica, 2007, 56(6): 3324-3331. doi: 10.7498/aps.56.3324
    [19] Li Jian-Qing, Mo Yuan-Long. General theory of nonlinear beam-wave interaction in traveling-wave tubes. Acta Physica Sinica, 2006, 55(8): 4117-4122. doi: 10.7498/aps.55.4117
    [20] YU SHENG, LI HONG-FU, XIE ZHONG-LIAN, LUO YONG. A NONLINEAR SIMULATION ON BEAM-WAVE INTERACTION FOR HIGH-HARMONIC COMPLEX CAVITY GYROTRON WITH RADUAL TRANSITION. Acta Physica Sinica, 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
Metrics
  • Abstract views:  4503
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  13 August 2017
  • Accepted Date:  01 October 2017
  • Published Online:  05 January 2018

/

返回文章
返回