Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-dimensional simulations and analyses of spherical hohlraum experiments on SGⅢ laser facility

Li Shu Chen Yao-Hua Ji Zhi-Cheng Zhang Ming-Yu Ren Guo-Li Huo Wen-Yi Yan Wei-Hua Han Xiao-Ying Li Zhi-Chao Liu Jie Lan Ke

Citation:

Three-dimensional simulations and analyses of spherical hohlraum experiments on SGⅢ laser facility

Li Shu, Chen Yao-Hua, Ji Zhi-Cheng, Zhang Ming-Yu, Ren Guo-Li, Huo Wen-Yi, Yan Wei-Hua, Han Xiao-Ying, Li Zhi-Chao, Liu Jie, Lan Ke
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A new type of laser fusion indirect drive octahedral spherical hohlraum has been built up by Chinese researchers in recent years. The hohlraum with 6 laser entrance holes (LEHs) has superiority over other hohlraum configurations in both robust inherent high symmetry and high coupling energy efficiency from laser to hotspot for inertial confinement fusion study. Recently, an experimental investigation on radiation emission from the spherical hohlraum with two LEHs has been performed on the SGⅢ laser facility. In this experiment, 32 laser beams (24 beams from the top, 8 beams from the bottom) are injected into the hohlraum within 3 ns, and the total laser energy is 86.4 kJ. The hohlraum radius is 1.8 mm, and the radius of laser entrance hole is 0.6 mm. The experiments are conducted under two conditions:one is that a 0.48-radius capsule is located at the center of the hohlraum, and the other is that nothing is located in the hohlraum. Some flat response X-ray detectors (FXRDs) are installed at different angles on the target wall to collect the radiation energy. We carry out three-dimensional (3D) simulations of the experiment by using our 3D radiation implicit Monte Carlo code IMC3D. This code was developed in recent years based on fleck and Cumming's ideas. The hydrodynamics is not taken into consideration in the simulations, so we deduct 30% laser energy lost to hohlraum wall movements and back scattered by laser plasma instabilities. Based on the approximation, the simulation results are reasonable in principle. As a result, the radiation temperature of the hohlraum with capsule is 230 eV, and the radiation temperature of the hohlraum without capsule is 238 eV. At the end of laser injection, the capsule reflection ratio is 0.83. Compared with the experimental data, most of the simulation data agree well with the detector observations, except the data at 0 angle. The possible reasons for the difference are analyzed. The flux at 0 angle is more sensitive to the wall plasma movements than at the other angles. So if we ignore this phenomenon, then the witch will occur both in experiment and in simulation, yielding obvious differences for those quantities which strongly relate to the hydrodynamics of wall plasma. Finally, the methods of eliminating the difference are proposed and the prospect of IMC3D is presented.
      Corresponding author: Li Shu, li_shu@iapcm.ac.cn
    • Funds: Project supported by the Technology Development Key Foundation of China Academy of Engineering Physics (Grant Nos. 2013A0102002, 2012A0102005) and the National Natural Science Foundation of China (Grant No. 11475033).
    [1]

    Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defense Industry Press) (in Chinese)[张均, 常铁强 2004 激光核聚变靶物理基础(北京: 国防工业出版社)]

    [2]

    Atzeni S, Meyer-ter-Vehn J (Shen B F, Transl.) 2008 The Physics of Inertial Fusion (Beijing: Science Press) (in Chinese)[阿蔡塞, 迈耶特费 (沈百飞 译) 2008 惯性聚变物理 (北京: 科学出版社)]

    [3]

    Lindl J D 1995 Phys. Plasmas 2 3933

    [4]

    Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006

    [5]

    Moses E I, Lindl J D, Spaeth M L, Patterson R W, Sawicki R H, Atherton L J, Baisden P A, Lagin L J, Larson D W, Magowan B J, Miller G H, Rardin D C, Roberts V S, van Wonterghem B M, Wegner P J 2016 Fusion Sci. Technol. 69 1

    [6]

    Lindl J D 2014 Phys. Plasmas 21 020501

    [7]

    Lan K, Liu J, Lai D X, Zheng W D, He X T 2014 Phys. Plasmas 21 010704

    [8]

    Lan K, He X T, Liu J, Zheng W D, Lai D X 2014 Phys. Plasmas 21 052704

    [9]

    Lan K, Zheng W D 2014 Phys. Plasmas 21 090704

    [10]

    Huo W Y, Liu J, Zhao Y Q, Zheng W D, Lan K 2014 Phys. Plasmas 21 114503

    [11]

    Li S, Lan K, Liu J 2015 Laser Part. Beams 15 263

    [12]

    Lan K, Liu J, Li Z C, Xie X F, Huo W Y, Chen Y H, Ren G L, Zheng C Y, Yang D, Li S W, Yang Z W, Guo L, Li S, Zhang M Y, Han X Y, Zhai C L, Hou L F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Wang F, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Zhang W, Du K, Zhao R C, Li P, Wang W, Su J Q, Deng X W, Hu D X, Zhou W, Jia H T, Ding Y K, Zheng W G, He X T 2016 Matter Radiat. Extremes 1 8

    [13]

    Fleck J A, Cummings J D 1971 J. Comput. Phys. 8 313

    [14]

    Li S, Li G, Tian D F, Deng L 2013 Acta Phys. Sin. 62 249501 (in Chinese)[李树, 李刚, 田东风, 邓力 2013 物理学报 62 249501]

    [15]

    Huo W Y, Li Z C, Yang D, Lan K, Liu J, Ren G L, Li S W, Yang Z W, Guo L, Hou L F, Xie X F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Du K, Zhao R C, Li P, Wang W, Su J Q, Ding Y K, He X T, Zhang W Y 2016 Matter Radiat. Extremes 1 2

  • [1]

    Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defense Industry Press) (in Chinese)[张均, 常铁强 2004 激光核聚变靶物理基础(北京: 国防工业出版社)]

    [2]

    Atzeni S, Meyer-ter-Vehn J (Shen B F, Transl.) 2008 The Physics of Inertial Fusion (Beijing: Science Press) (in Chinese)[阿蔡塞, 迈耶特费 (沈百飞 译) 2008 惯性聚变物理 (北京: 科学出版社)]

    [3]

    Lindl J D 1995 Phys. Plasmas 2 3933

    [4]

    Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006

    [5]

    Moses E I, Lindl J D, Spaeth M L, Patterson R W, Sawicki R H, Atherton L J, Baisden P A, Lagin L J, Larson D W, Magowan B J, Miller G H, Rardin D C, Roberts V S, van Wonterghem B M, Wegner P J 2016 Fusion Sci. Technol. 69 1

    [6]

    Lindl J D 2014 Phys. Plasmas 21 020501

    [7]

    Lan K, Liu J, Lai D X, Zheng W D, He X T 2014 Phys. Plasmas 21 010704

    [8]

    Lan K, He X T, Liu J, Zheng W D, Lai D X 2014 Phys. Plasmas 21 052704

    [9]

    Lan K, Zheng W D 2014 Phys. Plasmas 21 090704

    [10]

    Huo W Y, Liu J, Zhao Y Q, Zheng W D, Lan K 2014 Phys. Plasmas 21 114503

    [11]

    Li S, Lan K, Liu J 2015 Laser Part. Beams 15 263

    [12]

    Lan K, Liu J, Li Z C, Xie X F, Huo W Y, Chen Y H, Ren G L, Zheng C Y, Yang D, Li S W, Yang Z W, Guo L, Li S, Zhang M Y, Han X Y, Zhai C L, Hou L F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Wang F, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Zhang W, Du K, Zhao R C, Li P, Wang W, Su J Q, Deng X W, Hu D X, Zhou W, Jia H T, Ding Y K, Zheng W G, He X T 2016 Matter Radiat. Extremes 1 8

    [13]

    Fleck J A, Cummings J D 1971 J. Comput. Phys. 8 313

    [14]

    Li S, Li G, Tian D F, Deng L 2013 Acta Phys. Sin. 62 249501 (in Chinese)[李树, 李刚, 田东风, 邓力 2013 物理学报 62 249501]

    [15]

    Huo W Y, Li Z C, Yang D, Lan K, Liu J, Ren G L, Li S W, Yang Z W, Guo L, Hou L F, Xie X F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Du K, Zhao R C, Li P, Wang W, Su J Q, Ding Y K, He X T, Zhang W Y 2016 Matter Radiat. Extremes 1 2

  • [1] Huang Tian-Xuan, Wu Chang-Shu, Chen Zhong-Jing, Yan Ji, Li Xin, Ge Feng-Jun, Zhang Xing, Jiang Wei, Deng Bo, Hou Li-Fei, Pu Yu-Dong, Dong Yun-Song, Wang Li-Feng. Improving symmetry tuning with I-raum in indirect-driven implosions. Acta Physica Sinica, 2023, 72(2): 025201. doi: 10.7498/aps.72.20220861
    [2] Zhang Zhe, Yuan Xiao-Hui, Zhang Yi-Hang, Liu Hao, Fang Ke, Zhang Cheng-Long, Liu Zheng-Dong, Zhao Xu, Dong Quan-Li, Liu Gao-Yang, Dai Yu, Gu Hao-Chen, Li Yu-Tong, Zheng Jian, Zhong Jia-Yong, Zhang Jie. Efficient energy transition from kinetic to internal energy in supersonic collision of high-density plasma jets from conical implosions. Acta Physica Sinica, 2022, 71(15): 155201. doi: 10.7498/aps.71.20220361
    [3] Fang Ke, Zhang Zhe, Li Yu-Tong, Zhang Jie. Analytical studies of Rayleigh-Taylor instability growth of double-cone ignition scheme in 2020 winter experimental campaign. Acta Physica Sinica, 2022, 71(3): 035204. doi: 10.7498/aps.71.20211172
    [4] Analytical studies of Rayleigh-Taylor instability growth in 2020 DCI winter experimental campaign. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211172
    [5] Chu Gen-Bai, Yu Ming-Hai, Shui Min, Fan Wei, Xi Tao, Jing Long-Fei, Zhao Yong-Qiang, Wu Yu-Chi, Xin Jian-Ting, Zhou Wei-Min. Experimental technique for dynamic fragmentation of materials via indirect drive by high-intensity laser. Acta Physica Sinica, 2020, 69(2): 026201. doi: 10.7498/aps.69.20191245
    [6] Xu Yu-Pei, Li Shu. An efficient Monte Carlo simulation method for thermal radiation transport. Acta Physica Sinica, 2020, 69(2): 029501. doi: 10.7498/aps.69.20191315
    [7] Xu Yu-Pei, Li Shu. Modification of method of sampling radiation source particle in spherical geometry. Acta Physica Sinica, 2020, 69(11): 119501. doi: 10.7498/aps.69.20200024
    [8] Chen Zhong, Zhao Zi-Jia, Lü Zhong-Liang, Li Jun-Han, Pan Dong-Mei. Numerical simulation of deuterium-tritium fusion reaction rate in laser plasma based on Monte Carlo-discrete ordinate method. Acta Physica Sinica, 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [9] Hou Peng-Cheng, Zhong Zhe-Qiang, Wen Ping, Zhang Bin. A novel arrangement scheme of laser quads for spherical hohlraum in laser indirect-driven facility. Acta Physica Sinica, 2016, 65(2): 024202. doi: 10.7498/aps.65.024202
    [10] Li Shu, Lan Ke, Lai Dong-Xian, Liu Jie. Monte Carlo simulation of the radiation transport of spherical holhraum. Acta Physica Sinica, 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [11] Wang Long, Guo Er-Fu, Han Ji-Feng, Liu Jian-Bo, Li Yong-Qing, Zhou Rong, Yang Chao-Wen. Influence of static vacuum on the preparation of cluster of supersonic gas jet. Acta Physica Sinica, 2014, 63(20): 203601. doi: 10.7498/aps.63.203601
    [12] Li Shu, Deng Li, Tian Dong-Feng, Li Gang. A new sampling method based on radiation energy density for location of radiative source particles. Acta Physica Sinica, 2014, 63(23): 239501. doi: 10.7498/aps.63.239501
    [13] Li Hang, Pu Yu-Dong, Jing Long-Fei, Lin Zhi-Wei, Chen Bo-Lun, Jiang Wei, Zhou Jin-Yu, Huang Tian-Xuan, Zhang Hai-Ying, Yu Rui-Zhen, Zhang Ji-Yan, Miao Wen-Yong, Zheng Zhi-Jian, Cao Zhu-Rong, Yang Jia-Min, Liu Shen-Ye, Jiang Shao-En, Ding Yong-Kun, Kuang Long-Yu, Hu Guang-Yue, Zheng Jian. Variations of implosion asymmetry with hohlraum length and time in indirect-drive inertial confinement fusion. Acta Physica Sinica, 2013, 62(22): 225204. doi: 10.7498/aps.62.225204
    [14] Li Shu, Li Gang, Tian Dong-Feng, Deng Li. An implicit Monte Carlo method for thermal radiation transport. Acta Physica Sinica, 2013, 62(24): 249501. doi: 10.7498/aps.62.249501
    [15] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Jiang Xiao-Hua, Xu Tao, Ding Yong-Kun, Zhang Bao-Han. Shock experiment with sandwiched target in laser indirect-drive experiment. Acta Physica Sinica, 2011, 60(11): 115203. doi: 10.7498/aps.60.115203
    [16] Zhou Jin-Yu, Huang Tian-Xuan, Meng Lin, Jiang Wei. Angular distribution measurement and simulation of M band X-ray from the half- hohlraum. Acta Physica Sinica, 2010, 59(3): 1913-1916. doi: 10.7498/aps.59.1913
    [17] Li San-Wei, Yi Rong-Qing, Jiang Xiao-Hua, He Xiao-An, Chui Yan-Li, Liu Yong-Gang, Ding Yong-Kun, Liu Shen-Ye, Lan Ke, Li Yong-Sheng, Wu Chang-Shu, Gu Pei-Jun, Pei Wen-Bing, He Xian-Tu. Experimental study of radiation temperature for gold hohlraum heated with 1 ns,0.35 μm lasers on SG-Ⅲ prototype laser facility. Acta Physica Sinica, 2009, 58(5): 3255-3261. doi: 10.7498/aps.58.3255
    [18] Lin Hong-Huan, Wang Jian-Jun, Sui Zhan, Li Ming-Zhong, Chen Guang-Hui, Ding Lei, Tang Jun, Deng Qing-Hua, Luo Yi-Ming, Dong Yi-Fang, Li Feng. Integrated all fiber optical pulse generation system for laser fusion driver. Acta Physica Sinica, 2008, 57(3): 1771-1777. doi: 10.7498/aps.57.1771
    [19] XIAO JUN, LV BAI-DA, JIANG MING. NUMERICAL INVESTIGATION OF QUASI-FAR-FIELD APPLICATION OF ZERO-CORRELATION PHASE PLATE. Acta Physica Sinica, 2000, 49(12): 2383-2388. doi: 10.7498/aps.49.2383
    [20] ZHANG BIN, Lv BAI-DA, XIAO JUN. STUDY OF BEAM UNIFORMITY METHODS IN INDIRECT-DRIVEN LASER FUSION. Acta Physica Sinica, 1998, 47(12): 1998-2004. doi: 10.7498/aps.47.1998
Metrics
  • Abstract views:  5164
  • PDF Downloads:  170
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2017
  • Accepted Date:  01 September 2017
  • Published Online:  20 January 2019

/

返回文章
返回