|
|
Mach-Zehnder interferometer based on fiber taper and fiber core mismatch for humidity sensing |
Cheng Jun-Ni |
School of Energy Engineering, Yulin University, Yulin 719000, China |
|
|
Abstract A simple and high sensitivity optical fiber relative humidity (RH) sensor based on Mach-Zehnder interferometer (MZI) is proposed and demonstrated in this paper. A single-mode fiber and a graded-index multimode fiber are connected by a fiber taper to form a section. Then an uncoated dispersion compensation fiber is sandwiched between two short sections of the graded-index multimode fiber.Therefore, a sensing structure is set up as a single-mode fiber-taper fiber-graded-index multimode fiber-dispersion compensation fiber-graded-index multimode fiber-taper laser-single-mode fiber. The taper fiber is used to augment the energy of the cladding mode. The two nodes of the graded-index multimode fiber can be looked as a mode coupler. Thus an MZI is constructed. Since the external RH change can make the transmission spectrum energy changed, we can obtain the RH by detecting the peak energy variation of the interference pattern induced by the evanescent-field interaction. The experimental results show that the peak energy changes linearly with surrounding relative humidity. Under the condition of 35%Rh-85%RH, the sensitivity of the sensor with a 20 mm dispersion compensation fiber is -0.0668 dB/%RH and the linearity is 0.995. Moreover, temperature response characteristics are investigated. Experimental results suggest that the transmission spectrum energy of the sensor is insensitive to temperature. With temperature increasing, the transmission spectrum presents obviously a red-shift, yet the peak energy of the monitoring point barely moves, which demonstrates its potential for measuring simultaneously RH and temperature. The proposed sensor has a small size and simple manufacturing process, which can make it widely used to measure RH.
|
Received: 21 July 2017
|
PACS: |
42.81.Pa
|
(Sensors, gyros)
|
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
42.25.Hz
|
(Interference)
|
|
Fund: Project supported by the Research Foundation of Science and Technology Board of Yulin, Shaanxi, China (Grant No. 2015cxy-22) and the Fundamental Research Funds for Yulin University, China (Grant No. JG-1527). |
Corresponding Authors:
程君妮
E-mail: jnchengylu@163.com
|
|
|
|
[1] |
Kolpakov S A, Gordon N T, Mou C B, Zhou K M 2014 Sensors 14 3986
|
[2] |
Xu W, Huang W B, Huang X G, Yu C Y 2013 Opt. Fiber Technol. 19 583
|
[3] |
Xie W J, Yang M, Cheng Y, Li D, Zhang Y, Zhuang Z 2014 Opt. Fiber Technol. 20 314
|
[4] |
Sun H, Zhang X, Yuan L, Zhou L, Qiao X, Hu M 2014 IEEE Sens. J. 15 2891
|
[5] |
Su D, Qiao X G, Rong Q Z, Sun H, Zhang J, Bai Z Y, Du Y Y, Feng D Y, Wang Y P, Hu M L, Feng Z Y 2014 Opt. Commun. 311 107
|
[6] |
Lin Y, Gong Y, Wu Y, Wu H 2015 Photon. Sens. 5 60
|
[7] |
Kronenberg P, Rastogi P K, Giaccari P, Limberger H G 2002 Opt. Lett. 27 1385
|
[8] |
Shao M, Qiao X, Fu H, Zhao N, Liu Q, Gao H 2013 IEEE Sens. J. 13 2026
|
[9] |
Lokman A, Arof H, Harun S W, Harith Z, Rafaie H A, Nor R M 2016 IEEE Sens. J. 16 312
|
[10] |
Yu X J, Zhang J T, Chen X F, Liu S C 2014 Adv. Mater. Res. 981 616
|
[11] |
Shao M, Qiao X, Fu H W 2013 IEEE Sens. J. 13 2026
|
[12] |
Mather J, Semenova Y, Rajan G, Farrell G 2010 Electron. Lett. 46 1341
|
[13] |
Zhang Z F, Tao X M 2012 J. Lightwave Technol. 30 841
|
[14] |
Liu H F, Miao Y P, Liu B, Lin W, Zhang H, Song B B, Huang M G, Lin L 2015 IEEE Sens. J. 15 3424
|
[15] |
Mathew J, Semenova Y, Farrell G 2012 IEEE J. Sel. Top. Quantum Electron. 18 1553
|
[16] |
Zhang X K, Ye X Q, Chen Z D 2011 Acta Opt. Sin. 31 33 (in Chinese)[张小康, 叶晓靖, 陈志东 2011 光学学报 31 33]
|
[17] |
Zhang Y S, Qiao X G, Shao M, Fu H W, Zhao N 2015 Acta Photon. Sin. 44 115 (in Chinese)[张芸山, 乔学光, 邵敏, 傅海威, 李辉栋, 赵娜 2015 光子学报 44 115]
|
[18] |
Yeo T L, Sun T, Grattan K T V, Parry D, Lade R, Powell B D 2005 IEEE Sens. J. 5 1082
|
[19] |
Wu Q, Semenova Y L, Mathew J 2011 Opt. Lett. 36 1752
|
[20] |
Shao M, Qiao X G, Fu H W, Li H D, Zhao J L, Li Y A 2014 Opt. Laser Technol. 52 86
|
[21] |
Liu N, Hu M L, Sun H, Gang T T, Yang Z H, Rong Q Z, Qiao X G 2016 Opt. Commun. 367 1
|
[22] |
Yan X, Fu H W, Li H D, Qiao X G 2016 Chin. Opt. Lett. 14 030603
|
[23] |
Huan X F, Sheng D R, Cen K F, Zhou H 2007 Sensors Actuat. B: Chem. 127 518
|
[1] |
Li Zheng-Ying, Zhou Lei, Sun Wen-Feng, Li Zi-Mo, Wang Jia-Qi, Guo Hui-Yong, Wang Hong-Hai. High speed and high precision demodulation method of fiber grating based on dispersion effect[J]. Acta Physica Sinica, 2017, 66(1):
.
doi:10.7498/aps.66.014206. |
[2] |
Tan Lin-Qiu, Hua Deng-Xin, Wang Li, Gao Fei, Di Hui-Ge. Wind velocity retrieval and field widening techniques of fringe-imaging Mach-Zehnder interferometer for Doppler lidar[J]. Acta Phys. Sin, 2014, 63(22):
.
doi:10.7498/aps.63.224205. |
[3] |
Deng Fang-Ming, He Yi-Gang, Zuo Lei, Li Bing, Wu Ke-Han. Complementary metal-oxide-semiconductor humidity sensor design for passive ultra-high frequency radio-frequency identification application[J]. Acta Phys. Sin, 2014, 63(18):
.
doi:10.7498/aps.63.188402. |
[4] |
Mao Xiao-Li, Xiao Shao-Rong, Liu Qing-Quan, Li Min, Zhang Jia-Hong. Fluid dynamic analysis on solar heating error of radiosonde humidity measurement[J]. Acta Phys. Sin, 2014, 63(14):
.
doi:10.7498/aps.63.144701. |
|
|
|
|