Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Equivalent circuit model for plate-type magnetoelectric laminate composite considering an interface coupling factor

Lou Guo-Feng Yu Xin-Jie Lu Shi-Hua

Citation:

Equivalent circuit model for plate-type magnetoelectric laminate composite considering an interface coupling factor

Lou Guo-Feng, Yu Xin-Jie, Lu Shi-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We describe the modeling of magnetoelectric (ME) effect in the plate-type Terfenol-D/PZT laminate composite by introducing a newly proposed interface coupling factor into the equivalent circuit model, aiming at providing a guidance for designing, fabricating and using the ME laminate composite based devices, such as current sensor, magnetic sensor, energy harvester, and wireless energy transfer system. Considering that the strains of the magnetostrictive and piezoelectric layers are not equal in actual operation due to the epoxy resin adhesive bonding condition, the equivalent circuit models of magnetostrictive and piezoelectric layers are created based on the constitutive equation and the equation of motion, respectively. An interface coupling factor kc is introduced which physically reflects the strain transfer condition between the magnetostrictive and piezoelectric phases. Specifically, the respective equivalent circuit models of magnetostrictive and piezoelectric layers are combined with an ideal transformer whose turn-ratio is just the interface coupling factor. Furthermore, the theoretical expressions containing kc for the longitudinal ME voltage coefficient v and the optimum thickness ratio noptim to which the maximum ME voltage coefficient corresponds are derived from the modified equivalent circuit model of ME laminate, where the interface coupling factor acts as an ideal transformer. To explore the influence of mechanical load on the interface coupling factor kc, two sets of weights, i.e., 100 g and 500 g, are placed on the top of the ME laminates, each with the same thickness ratio n in the sample fabrication for comparison. A total of 12 L-T mode plate-type ME laminate samples with different-thickness configurations are fabricated. The interface coupling factors determined from the measured v and the DC bias magnetic field Hbias are 0.15 for 500 g pre-mechanical load and 0.10 for 100 g pre-mechanical load, respectively. Furthermore, the measured optimum thickness ratios are 0.57 for kc=0.15 and 0.50 for kc=0.10, respectively. Both the measured ME voltage coefficient v and optimum thickness ratio containing kc agree well with the corresponding theoretical predictions. The relationship between the optimum thickness ratios under two different mechanical loads remains unchanged, i.e., the measured optimum thickness ratio for kc=0.15 is larger than for kc=0.10. The experimental results verify the reasonability and correctness of the introduction of kc in the modified equivalent circuit model. The possible reasons for different interface coupling factors under different loads are also qualitatively discussed in this paper.
      Corresponding author: Yu Xin-Jie, yuxj@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51377087).
    [1]

    Fiebig M 2005 J. Phys. Appl. Phys. 38 R123

    [2]

    Nan C W, Bichurin M I, Dong S, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [3]

    Ryu J, Carazo A V, Uchino K, Kim H E 2001 Jpn. J. Appl. Phys. 40 4948

    [4]

    Ryu J, Priya S, Carazo A V, Uchino K, Kim H E 2001 J. Am. Ceram. Soc. 84 2905

    [5]

    Harshe G R 1991 Ph. D. Dissertation (Pennsylvania: The Pennsylvania State University)

    [6]

    Harshe G, Dougherty J P, Newnham R E 1993 Int. J. Appl. Electromagn. Mater. 4 145

    [7]

    Avellaneda M, Harshe G 1994 J. Intell. Mater. Syst. Struct. 5 501

    [8]

    Nan C W 1994 Phys. Rev. B 49 12619

    [9]

    Nan C W 1994 J. Appl. Phys. 76 1155

    [10]

    Bichurin M I, Petrov V M, Srinivasan G 2002 J. Appl. Phys. 92 7681

    [11]

    Bichurin M I, Filippov D A, Petrov V M, Laletsin V M, Paddubnaya N, Srinivasan G 2003 Phys. Rev. B 68 132408

    [12]

    Filippov D A 2005 Phys. Solid State 47 1118

    [13]

    Dong S, Li J F, Viehland D 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 1253

    [14]

    Dong S, Zhai J 2008 Chin. Sci. Bull. 53 2113

    [15]

    Lou G, Yu X, Lu S 2017 Sensors 17 1399

    [16]

    Dong S, Li J F, Viehland D 2004 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 794

    [17]

    Mason W P 1939 Phys. Rev. 55 775

    [18]

    Mason W P 1964 Physical Acoustics: Principles and Methods (Vol. 1) (New York: Academic Press) p169

    [19]

    Engdahl G 1999 Handbook of Giant Magnetostrictive Materials (San Diego: Academic Press) p135

    [20]

    Ballato A 2001 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48 1189

    [21]

    Yu X, Lou G, Chen H, Wen C, Lu S 2015 IEEE Sens. J. 15 5839

    [22]

    Yu X J, Wu T Y, Li Z 2013 Acta Phys. Sin. 62 058503 (in Chinese)[于歆杰, 吴天逸, 李臻 2013 物理学报 62 058503]

  • [1]

    Fiebig M 2005 J. Phys. Appl. Phys. 38 R123

    [2]

    Nan C W, Bichurin M I, Dong S, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [3]

    Ryu J, Carazo A V, Uchino K, Kim H E 2001 Jpn. J. Appl. Phys. 40 4948

    [4]

    Ryu J, Priya S, Carazo A V, Uchino K, Kim H E 2001 J. Am. Ceram. Soc. 84 2905

    [5]

    Harshe G R 1991 Ph. D. Dissertation (Pennsylvania: The Pennsylvania State University)

    [6]

    Harshe G, Dougherty J P, Newnham R E 1993 Int. J. Appl. Electromagn. Mater. 4 145

    [7]

    Avellaneda M, Harshe G 1994 J. Intell. Mater. Syst. Struct. 5 501

    [8]

    Nan C W 1994 Phys. Rev. B 49 12619

    [9]

    Nan C W 1994 J. Appl. Phys. 76 1155

    [10]

    Bichurin M I, Petrov V M, Srinivasan G 2002 J. Appl. Phys. 92 7681

    [11]

    Bichurin M I, Filippov D A, Petrov V M, Laletsin V M, Paddubnaya N, Srinivasan G 2003 Phys. Rev. B 68 132408

    [12]

    Filippov D A 2005 Phys. Solid State 47 1118

    [13]

    Dong S, Li J F, Viehland D 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 1253

    [14]

    Dong S, Zhai J 2008 Chin. Sci. Bull. 53 2113

    [15]

    Lou G, Yu X, Lu S 2017 Sensors 17 1399

    [16]

    Dong S, Li J F, Viehland D 2004 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 794

    [17]

    Mason W P 1939 Phys. Rev. 55 775

    [18]

    Mason W P 1964 Physical Acoustics: Principles and Methods (Vol. 1) (New York: Academic Press) p169

    [19]

    Engdahl G 1999 Handbook of Giant Magnetostrictive Materials (San Diego: Academic Press) p135

    [20]

    Ballato A 2001 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48 1189

    [21]

    Yu X, Lou G, Chen H, Wen C, Lu S 2015 IEEE Sens. J. 15 5839

    [22]

    Yu X J, Wu T Y, Li Z 2013 Acta Phys. Sin. 62 058503 (in Chinese)[于歆杰, 吴天逸, 李臻 2013 物理学报 62 058503]

  • [1] Xu Ting, Wang Zi-Shuai, Li Xuan-Hua, Sha Wei E. I.. Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Acta Physica Sinica, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [2] Li Yu-Han, Deng Lian-Wen, Luo Heng, He Long-Hui, He Jun, Xu Yun-Chao, Huang Sheng-Xiang. Equivalent circuit model and microwave reflection loss mechanism of double-layer spiral-ring metasurface embedded composite microwave absorber. Acta Physica Sinica, 2019, 68(9): 095201. doi: 10.7498/aps.68.20181960
    [3] Yu Bin, Hu Zhong-Qiang, Cheng Yu-Xin, Peng Bin, Zhou Zi-Yao, Liu Ming. Recent progress of multiferroic magnetoelectric devices. Acta Physica Sinica, 2018, 67(15): 157507. doi: 10.7498/aps.67.20180857
    [4] Yang Na-Na, Chen Xuan, Wang Yao-Jin. Magnetoelectric heterostructure and device application. Acta Physica Sinica, 2018, 67(15): 157508. doi: 10.7498/aps.67.20180856
    [5] Cao Jiang-Wei, Wang Rui, Wang Ying, Bai Jian-Min, Wei Fu-Lin. Measurement and study of low-frequency noise in TMR magnetic field sensor. Acta Physica Sinica, 2016, 65(5): 057501. doi: 10.7498/aps.65.057501
    [6] Zhang Yuan, Gao Yan-Jun, Hu Cheng, Tan Xing-Yi, Qiu Da, Zhang Ting-Ting, Zhu Yong-Dan, Li Mei-Ya. Optimization design for magnetoelectric coupling property of the magnet/bimorph composite. Acta Physica Sinica, 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [7] Jiang Yan-Nan, Wang Yang, Ge De-Biao, Li Si-Min, Cao Wei-Ping, Gao Xi, Yu Xin-Hua. An ultra-wideband absorber based on graphene. Acta Physica Sinica, 2016, 65(5): 054101. doi: 10.7498/aps.65.054101
    [8] Shi Zhan, Chen Lai-Zhu, Tong Yong-Shuai, Zheng Zhi-Bin, Yang Shui-Yuan, Wang Cui-Ping, Liu Xing-Jun. Phase drift of magnetoelectric effect in Terfenol-D/PZT composite materials. Acta Physica Sinica, 2013, 62(1): 017501. doi: 10.7498/aps.62.017501
    [9] Yu Xin-Jie, Wu Tian-Yi, Li Zhen. Wireless energy transfer system based on metglas/PFC magnetoelectric laminated composites. Acta Physica Sinica, 2013, 62(5): 058503. doi: 10.7498/aps.62.058503
    [10] Hu Feng-Wei, Bao Bo-Cheng, Wu Hua-Gan, Wang Chun-Li. Equivalent circuit analysis model of charge-controlled memristor and its circuit characteristics. Acta Physica Sinica, 2013, 62(21): 218401. doi: 10.7498/aps.62.218401
    [11] Bai Chun-Jiang, Li Jian-Qing, Hu Yu-Lu, Yang Zhong-Hai, Li Bin. Calculation of beam-wave interaction of coupled-cavity TWT using equivalent circuit model. Acta Physica Sinica, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [12] Bi Ke, Ai Qian-Wei, Yang Lu, Wu Wei, Wang Yin-Gang. Study on resonance magnetoelectric effect of layeredNi/Pb(Zr,Ti)O3/TbFe2 composites. Acta Physica Sinica, 2011, 60(5): 057503. doi: 10.7498/aps.60.057503
    [13] Wang Wei, Luo Xiao-Bin, Yang Li-Jie, Zhang Ning. Magnetocapacitance effect of magnetoelectric laminated composite at resonant frequency. Acta Physica Sinica, 2011, 60(10): 107702. doi: 10.7498/aps.60.107702
    [14] Guo Fan, Li Yong-Dong, Wang Hong-Guang, Liu Chun-Liang, Hu Yi-Xiang, Zhang Peng-Fei, Ma Meng. Particle-in-cell simulation of outer magnetically insulated transmission line of Z-pinch accelerator. Acta Physica Sinica, 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [15] Ma Jing, Shi Zhan, Lin Yuan-Hua, Nan Ce-Wen. Magnetoelectric properties of multiferroic composites with pseudo 2-2 type multilayered structure. Acta Physica Sinica, 2009, 58(8): 5852-5856. doi: 10.7498/aps.58.5852
    [16] Cao Hong-Xia, Zhang Ning. Magnetoelectric effect in transition-metal-doped BaTiO3-Tb1-xDyxFe2-y bilayer. Acta Physica Sinica, 2008, 57(10): 6582-6586. doi: 10.7498/aps.57.6582
    [17] Pan Hai-Lin, Cheng Jin-Ke, Zhao Zhen-Jie, He Jia-Kang, Ruan Jian-Zhong, Yang Xie-Long, Yuan Wang-Zhi. Study of the LC resonance giant magneto-impedance effect. Acta Physica Sinica, 2008, 57(5): 3230-3236. doi: 10.7498/aps.57.3230
    [18] Hu Hui-Yong, Zhang He-Ming, Lü Yi, Dai Xian-Ying, Hou Hui, Ou Jian-Feng, Wang Wei, Wang Xi-Yuan. SiGe HBT large signal equivalent circuit model. Acta Physica Sinica, 2006, 55(1): 403-408. doi: 10.7498/aps.55.403
    [19] Wan Hong, Xie Li-Qiang, Wu Xue-Zhong, Liu Xi-Cong. Magnetoelectric effect of the TbDyFe/PZT laminated composite. Acta Physica Sinica, 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [20] ZHANG WU, WANG YAN. A MULTI-RETARDATOR MODEL FOR OPTICALLY HET-EROGENEOUS COMPOSITE MATERIALS. Acta Physica Sinica, 1994, 43(8): 1380-1385. doi: 10.7498/aps.43.1380
Metrics
  • Abstract views:  5735
  • PDF Downloads:  247
  • Cited By: 0
Publishing process
  • Received Date:  20 September 2017
  • Accepted Date:  23 October 2017
  • Published Online:  20 January 2019

/

返回文章
返回