Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A method of reducing false signature in spatially-modulated snapshot imaging polarimeter

Zhang Jing Ren Wen-Yi Cao Qi-Zhi Li Jian-Ying Deng Ting Jin Ming-Wu

Citation:

A method of reducing false signature in spatially-modulated snapshot imaging polarimeter

Zhang Jing, Ren Wen-Yi, Cao Qi-Zhi, Li Jian-Ying, Deng Ting, Jin Ming-Wu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Spatially-modulated snapshot imaging polarimeter can encode four Stokes parameters (S0, S1, S2 and S3) into a single interferogram and allow the instantaneous measurement of polarization from a single snapshot.However, the reconstructed polarization information contains aliasing signal, and the reconstructed intensity images suffer low spatial resolution because of the crosstalk between high frequency components of the image and frequency domain filtering for the polarization channels.In this paper, we propose an image superposition and subtraction method to mitigate the aliasing problem and to recover the image resolution.The two interferograms acquired from two snapshot measurements are superposed to obtain the intensity image (S0 component) of an object without the polarization components because the phases of the polarization components in the two interferograms are opposite.In comparison with the intensity of each of the original interferograms, the intensity of S0 component increases twice and its spatial resolution improves up to a maximum value offered by the instrument.Then a subtraction between the two interferograms is performed to derive the pure interference fringes while the intensity image vanishes.The intensity of the pure interference fringes also increases twice compared with that of each original interferogram because phases of the interference terms in original interferograms are opposite.The polarization images (S1, S2 and S3 components) can be reconstructed from the pure interference fringes, and do not include crosstalk signals between the high frequency components of the intensity image. The theoretical basis of the method is presented through a detailed analysis.Its feasibility is verified by both computer simulation and experiment.The simulation results show that the otherness and the structural similarity index between the input and reconstructed intensity images is zero and 1, respectively, indicating a perfect reconstruction of S0.The results also make it clear that the pure interference fringes do not include any component of intensity image, and thus the reconstructed polarization information does not contain any crosstalk signals.Moreover, the experimental results are in accordance with the theoretical expectation and the computer simulations.This research provides a novel means for spatially-modulated snapshot imaging polarization technology to obtain full-resolution object images and high-quality reconstructed polarization information.
      Corresponding author: Cao Qi-Zhi, qzhcao77@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11664004, 11504297, 41661085), the National Natural Science Foundation of Guangxi, China (Grant No. 2016GXNSFAA380241), Shaanxi Science and Technology, China (Grant No. 2016KTZDGY05-02), Basic Ability Promotion Project of Guangxi Middle and Young Teachers in University, China (Grant No. 2017KY0403), Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, China (Guangxi Teachers Education University), and the Ph. D. Initial Fund of the Guangxi Teachers Education University, China.
    [1]

    Snik F, Craven-Jones J, Escuti M, Fineschid S, Harringtone D, Martinof A D, Mawetg D, Riedih J, Tyo J S 2014 Proc. SPIE 9099, Polarization:Measurement, Analysis, and Remote Sensing XI Baltimore, Maryland, United States, March 24-28, 2014 p90990B

    [2]

    Forward S, Gribble A, Alali S, Andras A L, Vitkin I A 2017 Sci. Reports 7 11958

    [3]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453

    [4]

    Alali S, Vitkin A 2015 J. Biomed. Opt. 20 0611041

    [5]

    .Oka K, Kaneko T 2003 Opt. Express 11 1510

    [6]

    Luo H T 2008 Ph. D. Dissertation (Tucson:University of Arizona)

    [7]

    Cao Q Z 2014 Ph. D. Dissertation (Xi'an:xi'an Jiaotong University) (in Chinese)[曹奇志 2014 博士学位论文 (西安:西安交通大学)]

    [8]

    Cao Q Z, Zhang C M, DeHoog E 2012 Appl. Opt. 51 5791

    [9]

    Jian X H, Zhang C M, Zhao B C 2007 Acta Phys. Sin. 56 824 (in Chinese)[简小华, 张淳民, 赵葆常 2007 物理学报 56 824]

    [10]

    Peng Z H, Zhang C M, Zhao B C, Li Y C, Wu F Q 2006 Acta Phys. Sin. 55 6374 (in Chinese)[彭志红, 张淳民, 赵葆常, 李英才, 吴福全 2006 物理学报 55 6374]

    [11]

    Qu Y, Zhang C M, Wang D Y, Tian P B, Bai W G, Zhang X Y, Zhang P, Dai H S, Wu Q M 2013 Int. J. Remote Sens. 34 3938

    [12]

    Yuan Z L, Zhang C M, Zhao B C 2007 Acta Phys. Sin. 56 6413 (in Chinese)[彭志红, 张淳民, 赵葆常 2007 物理学报 56 6413]

    [13]

    Oka K, Haga Y, Komaki Y 2013 Proceedings Volume 8873, Polarization Science and Remote Sensing VI San Diego, California, United States September 27, 2013 p88730R-1

    [14]

    Oka K, Haga Y, Michida H 2015 Proceedings Volume 9613, Polarization Science and Remote Sensing VⅡ San Diego, California, United States, September 1, 2015 p96130E-9

    [15]

    Oka, K, Kodai S, Hiroshi M 2017 Proceedings Volume 10407, Polarization Science and Remote Sensing VⅢ San Diego, California, United States, September 7, 2017 p104070M

    [16]

    Hu Q Y, Yang W F, Hu Y D, Hong J 2015 Acta Opt. Sin. 2 144 (in Chinese)[胡巧云, 杨伟锋, 胡亚东, 洪津 2015 光学学报 2 144]

    [17]

    Cao Q Z, Zhang J, DeHoog E, Lu Y, Hu B Q, Li W G, Li J Y, Fan D X, Deng T, Yan Y 2016 Acta Phys. Sin. 65 050702 (in Chinese)[曹奇志, 张晶, Edward DeHoog, 卢远, 胡宝清, 李武钢, 李建映, 樊东鑫, 邓婷, 阎妍 2016 物理学报 65 050702]

    [18]

    Cao Q Z, Zhang C M, Zhang J, Kang Y Q 2014 Optik 125 3380

    [19]

    Cao Q Z, Zhang J, DeHoog E, Zhang C M 2016 Appl. Opt. 55 954

    [20]

    Kudenov M, Escuti M, Dereniak E, Oka K 2011 Appl. Opt. 50 2283

    [21]

    Kudenov M W 2009 Ph. D. Dissertation (Tucson:The University of Arizona)

    [22]

    Horé A, Ziou D 2010 Proceedings of IEEE Conference on Pattern Recognition Istanbul, Turkey October 7, 2010 p2366

    [23]

    https://www.mathworks.com/help/images/ref/ssim.html?searchHighlight=SSIM&s_tid=doc_srchtitle[2017-11-8]

    [24]

    Wang Z, Bovik C, Sheikh R, Simoncelli P 2004 IEEE Trans. on Image Process. 13 600

  • [1]

    Snik F, Craven-Jones J, Escuti M, Fineschid S, Harringtone D, Martinof A D, Mawetg D, Riedih J, Tyo J S 2014 Proc. SPIE 9099, Polarization:Measurement, Analysis, and Remote Sensing XI Baltimore, Maryland, United States, March 24-28, 2014 p90990B

    [2]

    Forward S, Gribble A, Alali S, Andras A L, Vitkin I A 2017 Sci. Reports 7 11958

    [3]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453

    [4]

    Alali S, Vitkin A 2015 J. Biomed. Opt. 20 0611041

    [5]

    .Oka K, Kaneko T 2003 Opt. Express 11 1510

    [6]

    Luo H T 2008 Ph. D. Dissertation (Tucson:University of Arizona)

    [7]

    Cao Q Z 2014 Ph. D. Dissertation (Xi'an:xi'an Jiaotong University) (in Chinese)[曹奇志 2014 博士学位论文 (西安:西安交通大学)]

    [8]

    Cao Q Z, Zhang C M, DeHoog E 2012 Appl. Opt. 51 5791

    [9]

    Jian X H, Zhang C M, Zhao B C 2007 Acta Phys. Sin. 56 824 (in Chinese)[简小华, 张淳民, 赵葆常 2007 物理学报 56 824]

    [10]

    Peng Z H, Zhang C M, Zhao B C, Li Y C, Wu F Q 2006 Acta Phys. Sin. 55 6374 (in Chinese)[彭志红, 张淳民, 赵葆常, 李英才, 吴福全 2006 物理学报 55 6374]

    [11]

    Qu Y, Zhang C M, Wang D Y, Tian P B, Bai W G, Zhang X Y, Zhang P, Dai H S, Wu Q M 2013 Int. J. Remote Sens. 34 3938

    [12]

    Yuan Z L, Zhang C M, Zhao B C 2007 Acta Phys. Sin. 56 6413 (in Chinese)[彭志红, 张淳民, 赵葆常 2007 物理学报 56 6413]

    [13]

    Oka K, Haga Y, Komaki Y 2013 Proceedings Volume 8873, Polarization Science and Remote Sensing VI San Diego, California, United States September 27, 2013 p88730R-1

    [14]

    Oka K, Haga Y, Michida H 2015 Proceedings Volume 9613, Polarization Science and Remote Sensing VⅡ San Diego, California, United States, September 1, 2015 p96130E-9

    [15]

    Oka, K, Kodai S, Hiroshi M 2017 Proceedings Volume 10407, Polarization Science and Remote Sensing VⅢ San Diego, California, United States, September 7, 2017 p104070M

    [16]

    Hu Q Y, Yang W F, Hu Y D, Hong J 2015 Acta Opt. Sin. 2 144 (in Chinese)[胡巧云, 杨伟锋, 胡亚东, 洪津 2015 光学学报 2 144]

    [17]

    Cao Q Z, Zhang J, DeHoog E, Lu Y, Hu B Q, Li W G, Li J Y, Fan D X, Deng T, Yan Y 2016 Acta Phys. Sin. 65 050702 (in Chinese)[曹奇志, 张晶, Edward DeHoog, 卢远, 胡宝清, 李武钢, 李建映, 樊东鑫, 邓婷, 阎妍 2016 物理学报 65 050702]

    [18]

    Cao Q Z, Zhang C M, Zhang J, Kang Y Q 2014 Optik 125 3380

    [19]

    Cao Q Z, Zhang J, DeHoog E, Zhang C M 2016 Appl. Opt. 55 954

    [20]

    Kudenov M, Escuti M, Dereniak E, Oka K 2011 Appl. Opt. 50 2283

    [21]

    Kudenov M W 2009 Ph. D. Dissertation (Tucson:The University of Arizona)

    [22]

    Horé A, Ziou D 2010 Proceedings of IEEE Conference on Pattern Recognition Istanbul, Turkey October 7, 2010 p2366

    [23]

    https://www.mathworks.com/help/images/ref/ssim.html?searchHighlight=SSIM&s_tid=doc_srchtitle[2017-11-8]

    [24]

    Wang Z, Bovik C, Sheikh R, Simoncelli P 2004 IEEE Trans. on Image Process. 13 600

  • [1] Sun Sheng, Wang Chao, Shi Hao-Dong, Fu Qiang, Li Ying-Chao. Aberration correction of aperture-divided off-axis simultaneous polarization super-resolution imaging optical system. Acta Physica Sinica, 2022, 71(21): 214201. doi: 10.7498/aps.71.20220946
    [2] Xiang Peng-Cheng, Cai Cong-Bo, Wang Jie-Chao, Cai Shu-Hui, Chen Zhong. Super-resolved reconstruction method for spatiotemporally encoded magnetic resonance imaging based on deep neural network. Acta Physica Sinica, 2022, 71(5): 058702. doi: 10.7498/aps.71.20211754
    [3] Yu Jun-Jin, Guo Xing-Yi, Sui Yi-Hui, Song Jian-Ping, Ta De-An, Mei Yong-Feng, Xu Kai-Liang. Ultrafast ultrasound localization microscopy method for spinal cord mircovasculature imaging. Acta Physica Sinica, 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [4] Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang. Accelerating super-resolution ultrasound localization microscopy using generative adversarial net. Acta Physica Sinica, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [5] Lü Hao-Chang, Zhao Yun-Chi, Yang Guang, Dong Bo-Wen, Qi Jie, Zhang Jing-Yan, Zhu Zhao-Zhao, Sun Yang, Yu Guang-Hua, Jiang Yong, Wei Hong-Xiang, Wang Jing, Lu Jun, Wang Zhi-Hong, Cai Jian-Wang, Shen Bao-Gen, Yang Feng, Zhang Shen-Jin, Wang Shou-Guo. High resolution imaging based on photo-emission electron microscopy excited by deep ultraviolet laser. Acta Physica Sinica, 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [6] Zhang Qian, Wang Ya-Hui, Zhang Ming-Jiang, Zhang Jian-Zhong, Qiao Li-Jun, Wang Tao, Zhao Le. Distributed temperature measurement with millimeter-level high spatial resolution based on chaotic laser. Acta Physica Sinica, 2019, 68(10): 104208. doi: 10.7498/aps.68.20190018
    [7] Gao Qiang, Li Xiao-Qiu, Zhou Zhi-Peng, Sun Lei. Far-field super-resolution scanning imaging based on fractal resonator. Acta Physica Sinica, 2019, 68(24): 244102. doi: 10.7498/aps.68.20190620
    [8] Gao Qiang, Wang Xiao-Hua, Wang Bing-Zhong. Far-field super-resolution imaging based on wideband stereo-metalens. Acta Physica Sinica, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [9] Cao Qi-Zhi, Zhang Jing, Edward DeHoog, Lu Yuang, Hu Bao-Qing, Li Wu-Gang, Li Jian-Ying, Fan Dong-Xin, Deng Ting, Yan Yan. Static subminiature snapshot imaging polarimeter using spatial modulation. Acta Physica Sinica, 2016, 65(5): 050702. doi: 10.7498/aps.65.050702
    [10] Li Jie, Zhu Jing-Ping, Zhang Yun-Yao, Liu Hong, Hou Xun. Spectral zooming birefringent imaging spectrometer. Acta Physica Sinica, 2013, 62(2): 024205. doi: 10.7498/aps.62.024205
    [11] Zhang Wen-Xi, Xiang Li-Bin, Kong Xin-Xin, Li Yang, Wu Zhou, Zhou Zhi-Sheng. Resolution of coherent field imaging technique. Acta Physica Sinica, 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [12] Wang Fang, Zhao Xing, Yang Yong, Fang Zhi-Liang, Yuan Xiao-Cong. Comparison of the resolutions of integral imaging three-dimensional display based on human vision. Acta Physica Sinica, 2012, 61(8): 084212. doi: 10.7498/aps.61.084212
    [13] Lu Jing, Li Hao, He Yi, Shi Guo-Hua, Zhang Yu-Dong. Superresolution in adaptive optics confocal scanning laser ophthalmoscope. Acta Physica Sinica, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [14] Wu Dan, Tao Chao, Liu Xiao-Jun. Study of the resolution of limited-view photoacoustic tomography. Acta Physica Sinica, 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [15] Dai Qiu-Sheng, Qi Yu-Jin. Spatial resolution of pinhole single photon emission computed tomography imaging. Acta Physica Sinica, 2010, 59(2): 1357-1365. doi: 10.7498/aps.59.1357
    [16] Xiang Liang-Zhong, Xing Da, Guo Hua, Yang Si-Hua. High resolution fast digital photoacoustic CT for breast cancer diagnosis. Acta Physica Sinica, 2009, 58(7): 4610-4617. doi: 10.7498/aps.58.4610
    [17] Zhao Gui-Min, Lu Ming-Zhu, Wan Ming-Xi, Fang Li. Study of vibro-acoustography with high spatial resolution based on sector array transducers. Acta Physica Sinica, 2009, 58(9): 6596-6603. doi: 10.7498/aps.58.6596
    [18] Tan Zhong-Wei, Cao Ji-Hong, Chen Yong, Liu Yan, Ning Ti-Gang, Jian Shui-Sheng. Multi-wavelength dispersion compensator based on fiber gratings with low crosstalk. Acta Physica Sinica, 2007, 56(1): 274-279. doi: 10.7498/aps.56.274
    [19] Jian Ji-Qi, Ma Cheng, Jia Hui-Bo. Modeling and canceling of the readout crosstalk in photochromic dual-wavelength storage. Acta Physica Sinica, 2005, 54(8): 3604-3609. doi: 10.7498/aps.54.3604
    [20] Qi Guo-Sheng, Xiao Jia-Xi, Liu Rong, Jiang Pei-Jun, She Peng, Xu Duan-Yi. Study on multi-wavelength photochromic storage of diarylethene. Acta Physica Sinica, 2004, 53(4): 1076-1080. doi: 10.7498/aps.53.1076
Metrics
  • Abstract views:  4098
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2017
  • Accepted Date:  08 November 2017
  • Published Online:  20 February 2019

/

返回文章
返回