Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Plasma dynamic characteristics of a parallel-rail accelerator

Liu Shuai Huang Yi-Zhi Guo Hai-Shan Zhang Yong-Peng Yang Lan-Jun

Citation:

Plasma dynamic characteristics of a parallel-rail accelerator

Liu Shuai, Huang Yi-Zhi, Guo Hai-Shan, Zhang Yong-Peng, Yang Lan-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Electromagnetic plasma accelerators which can produce plasma jets with hypervelocity and high density have been widely used in the fields of nuclear physics and astrophysics. Parallel-rail accelerator, a type of electromagnetic plasma accelerator, is usually used to generate high density and compact plasma jets. The axial movements of plasma in a parallel-rail accelerator operated at different discharge currents and initial pressures are reported in this paper. Based on current truncation, the momentum of the first plasma jet is measured by a ballistic pendulum. The axial movement characteristics and velocity of the plasma during the acceleration phase are diagnosed by magnetic probes and photodiodes. The accelerator is powered by 14 stage pulse forming networks. The capacitor and inductor in each stage are 1.5 μF and 300 nH respectively, yielding a damped oscillation square wave of current with a pulse width of 20.6 μs. Plasma sheath is formed upon breakdown at the back wall insulator surface and subsequently accelerated by Lorentz force towards the open end of the accelerator. A secondary breakdown generally occurs at the starting end of the rail when the current reverses its direction, and then a secondary axial movement of plasma is formed. We focus on the first plasma jet accelerated by the first half-cycle of current. According to the snowplow model, the plasma velocity is proportional to the current and is inversely proportional to the square root of gas initial density or pressure. The axial velocity of the plasma is in a range from 8 km/s to 25 km/s when the discharge current is varied from 10 kA to 55 kA and the initial pressure is varied from 200 Pa to 1000 Pa. The experimental results show that the experimental velocities of the plasma are about 60%-80% of the theoretical result. It is likely that the viscous resistance of the electrode surface acting on the plasma and the mass increase of plasma caused by the electrode ablation are neglected in the snowplow model. The momentum of the first plasma jet is nearly proportional to the integration of the square of current over time, which is consistent with the predictions of the theoretical model. The maximum momenta of plasma jet at different currents appear at average velocities ranging from 13 km/s to 14 km/s when the plasma just moves to the outlet of the rail in the end of the first current pulse. The measured momentum of plasma jet is actually the total momentum of the truncated current waveform. The ratio of the momentum of the first plasma jet to the total measured momentum is about 87%. The momenta of the first plasma jet are in a range from 1.49 g·m/s to 9.88 g·m/s at discharge currents ranging from 21 kA to 51.6 kA. The experimental plasma momentum is about 75% of the theoretical result. These results show that the viscous resistance of rail electrode surface is about 25% of the Lorentz force, and thus leading to a lower value of plasma momentum.
      Corresponding author: Yang Lan-Jun, yanglj@xjtu.edu.cn
    [1]

    Cheng D Y 1971 AIAA J. 9 1681

    [2]

    Liu W Z, Wang H, Zhang D J, Zhang J 2014 Plasma Sci. Technol. 16 344

    [3]

    Chung K S, Chung K, Jung B K, Hwang Y S 2013 Fusion Eng. Des. 88 1782

    [4]

    Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans Plasma Sci. 38 232

    [5]

    Bendixsen L S C, Bott-Suzuki S C, Cordaro S W, Krishnan M, Chapman S, Coleman P, Chittenden J 2016 Phys. Plasmas 23 093112

    [6]

    Yang X Z, Liu J, Feng C H, Wang L 2008 Plasma Sci. Technol. 10 363

    [7]

    Cai M H, Wu F S, Li H W, Han J W 2014 Acta Phys. Sin. 63 019401 (in Chinese) [蔡明辉, 吴逢时, 李宏伟, 韩建伟 2014 物理学报 63 019401]

    [8]

    Underwood T C, Loebner K T K, Cappelli M A 2017 High Energ. Dens. Phys. 23 73

    [9]

    Wiechula J, Hock C, Iberler M, Manegold T, Schonlein A, Jacoby J 2015 Phys. Plasmas 22 043516

    [10]

    Hsu S C, Merritt E C, Moser A L, Awe T J, Brockington S J E, Davis J S, Adams C S, Case A, Cassibry J T, Dunn J P, Gilmore M A, Lynn A G, Messer S J, Witherspoon F D 2012 Phys. Plasmas 19 123514

    [11]

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203 (in Chinese) [杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 物理学报 66 055203]

    [12]

    Merritt E C, Lynn A G, Gilmore M A, Thoma C, Loverich J, Hsu S C 2012 Rev. Sci. Instrum. 83 10D523

    [13]

    Wiechula J, Schonlein A, Iberler M, Hock C, Manegold T, Bohlender B, Jacoby J 2016 AIP Adv 6 075313

    [14]

    Moser A L, Hsu S C 2015 Phys. Plasmas 22 055707

    [15]

    Merritt E C, Moser A L, Hsu S C, Adams C S, Dunn J P, Holgado A M, Gilmore M A 2014 Phys. Plasmas 21 055703

    [16]

    Thoma C, Welch D R, Hsu S C 2013 Phys. Plasmas 20 082128

    [17]

    Poehlmann F R, Cappelli M A, Rieker G B 2010 Phys. Plasmas 17 123508

    [18]

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201 (in Chinese) [高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 物理学报 61 145201]

    [19]

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075204 (in Chinese) [张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075204]

    [20]

    Yang L, Yan H J, Zhang J L, Hua Y, Ren C S 2014 High Voltage Engineering 40 2113 (in Chinese) [杨亮, 闫慧杰, 张俊龙, 滑跃, 任春生 2014 高电压技术 40 2113]

    [21]

    Bhuyan H, Mohanty S R, Neog N K, Bujarbarua S, Rout R K 2003 Meas. Sci. Technol. 14 1769

    [22]

    Cassibry J T, Thio Y C F, Wu S T 2006 Phys. Plasmas 13 053101

    [23]

    Al-Hawat S 2004 IEEE Trans. Plasma Sci. 32 764

    [24]

    Aghamir F M, Behbahani R A 2011 J. Appl. Phys. 109 043301

    [25]

    Witherspoon F D, Case A, Messer S J, Bomgardner R, Phillips M W, Brockington S, Elton R 2009 Rev. Sci. Instrum. 80 083506

    [26]

    Messer S, Case A, Bomgardner R, Phillips M, Witherspoon F D 2009 Phys. Plasmas 16 064502

    [27]

    Hsu S C, Awe T J, Brockington S, Case A, Cassibry J T, Kagan G, Messer S J, Stanic M, Tang X, Welch D R, Witherspoon F D 2012 IEEE Trans. Plasma Sci. 40 1287

    [28]

    Keshtkar A, Bayati S, Keshtkar A 2009 IEEE Trans. Magn. 45 305

    [29]

    Chau S W, Hsu K L, Lin D L, Tzeng C C 2007 J. Phys. D:Appl. Phys. 40 1944

  • [1]

    Cheng D Y 1971 AIAA J. 9 1681

    [2]

    Liu W Z, Wang H, Zhang D J, Zhang J 2014 Plasma Sci. Technol. 16 344

    [3]

    Chung K S, Chung K, Jung B K, Hwang Y S 2013 Fusion Eng. Des. 88 1782

    [4]

    Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans Plasma Sci. 38 232

    [5]

    Bendixsen L S C, Bott-Suzuki S C, Cordaro S W, Krishnan M, Chapman S, Coleman P, Chittenden J 2016 Phys. Plasmas 23 093112

    [6]

    Yang X Z, Liu J, Feng C H, Wang L 2008 Plasma Sci. Technol. 10 363

    [7]

    Cai M H, Wu F S, Li H W, Han J W 2014 Acta Phys. Sin. 63 019401 (in Chinese) [蔡明辉, 吴逢时, 李宏伟, 韩建伟 2014 物理学报 63 019401]

    [8]

    Underwood T C, Loebner K T K, Cappelli M A 2017 High Energ. Dens. Phys. 23 73

    [9]

    Wiechula J, Hock C, Iberler M, Manegold T, Schonlein A, Jacoby J 2015 Phys. Plasmas 22 043516

    [10]

    Hsu S C, Merritt E C, Moser A L, Awe T J, Brockington S J E, Davis J S, Adams C S, Case A, Cassibry J T, Dunn J P, Gilmore M A, Lynn A G, Messer S J, Witherspoon F D 2012 Phys. Plasmas 19 123514

    [11]

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203 (in Chinese) [杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 物理学报 66 055203]

    [12]

    Merritt E C, Lynn A G, Gilmore M A, Thoma C, Loverich J, Hsu S C 2012 Rev. Sci. Instrum. 83 10D523

    [13]

    Wiechula J, Schonlein A, Iberler M, Hock C, Manegold T, Bohlender B, Jacoby J 2016 AIP Adv 6 075313

    [14]

    Moser A L, Hsu S C 2015 Phys. Plasmas 22 055707

    [15]

    Merritt E C, Moser A L, Hsu S C, Adams C S, Dunn J P, Holgado A M, Gilmore M A 2014 Phys. Plasmas 21 055703

    [16]

    Thoma C, Welch D R, Hsu S C 2013 Phys. Plasmas 20 082128

    [17]

    Poehlmann F R, Cappelli M A, Rieker G B 2010 Phys. Plasmas 17 123508

    [18]

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201 (in Chinese) [高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 物理学报 61 145201]

    [19]

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075204 (in Chinese) [张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075204]

    [20]

    Yang L, Yan H J, Zhang J L, Hua Y, Ren C S 2014 High Voltage Engineering 40 2113 (in Chinese) [杨亮, 闫慧杰, 张俊龙, 滑跃, 任春生 2014 高电压技术 40 2113]

    [21]

    Bhuyan H, Mohanty S R, Neog N K, Bujarbarua S, Rout R K 2003 Meas. Sci. Technol. 14 1769

    [22]

    Cassibry J T, Thio Y C F, Wu S T 2006 Phys. Plasmas 13 053101

    [23]

    Al-Hawat S 2004 IEEE Trans. Plasma Sci. 32 764

    [24]

    Aghamir F M, Behbahani R A 2011 J. Appl. Phys. 109 043301

    [25]

    Witherspoon F D, Case A, Messer S J, Bomgardner R, Phillips M W, Brockington S, Elton R 2009 Rev. Sci. Instrum. 80 083506

    [26]

    Messer S, Case A, Bomgardner R, Phillips M, Witherspoon F D 2009 Phys. Plasmas 16 064502

    [27]

    Hsu S C, Awe T J, Brockington S, Case A, Cassibry J T, Kagan G, Messer S J, Stanic M, Tang X, Welch D R, Witherspoon F D 2012 IEEE Trans. Plasma Sci. 40 1287

    [28]

    Keshtkar A, Bayati S, Keshtkar A 2009 IEEE Trans. Magn. 45 305

    [29]

    Chau S W, Hsu K L, Lin D L, Tzeng C C 2007 J. Phys. D:Appl. Phys. 40 1944

  • [1] Liu Shuai, Xu Tao, Liu Kang-Qi, Zhang Yong-Peng, Yang Lan-Jun. Current distribution and plasma velocity characteristics of parallel-plate accelerator under static pressure. Acta Physica Sinica, 2023, 72(19): 195202. doi: 10.7498/aps.72.20231007
    [2] Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong. Graphene modification based on plasma technologies. Acta Physica Sinica, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [3] Liu Shuai, Shi Yu-Hao, Lin Tian-Yu, Zhang Yong-Peng, Lu Zhi-Jian, Yang Lan-Jun. Influence of operating parameters on discharge mode of parallel-rail accelerator. Acta Physica Sinica, 2021, 70(20): 205205. doi: 10.7498/aps.70.20210484
    [4] Pan Deng, Liu Chang-Xin, Zhang Ze-Yang, Gao Yu-Jin, Hao Xiu-Hong. Effect of velocity on polytetrafluoroethylene friction coefficient using molecular dynamics simulaiton. Acta Physica Sinica, 2019, 68(17): 176801. doi: 10.7498/aps.68.20190495
    [5] Liu Hui-Ping, Zou Xiu, Zou Bin-Yan, Qiu Ming-Hui. Bohm criterion for an electronegative magnetized plasma sheath. Acta Physica Sinica, 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [6] Gao Zhu-Xiu, Feng Chun-Hua, Yang Xuan-Zong, Huang Jian-Guo, Han Jian-Wei. Research on plasma axial velocity generated by small debris accelerator coaxial gun. Acta Physica Sinica, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [7] Li Hong-Wei, Han Jian-Wei, Huang Jian-Guo, Cai Ming-Hui, Li Xiao-Yin, Gao Zhu-Xiu. Method for measuring the particle velocity using plasma produced by hypervelocity impact. Acta Physica Sinica, 2010, 59(2): 1385-1390. doi: 10.7498/aps.59.1385
    [8] Zhao Guo-Wei, Wang Zhi-Jiang, Xu Yue-Min, Liang Zhi-Wei, Xu Jie. Numerical simulation of plasma nonlinear phenomena excited by radio-frequency wave using FDTD method. Acta Physica Sinica, 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [9] Dispersion analysis of a coupled-cavity slow wave structure filled with plasma. Acta Physica Sinica, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [10] An Zhi-Yong, Li Ying-Hong, Wu Yun, Su Chang-Bing, Song Hui-Min. Electric field simulation of a symmetrical plasma actuator system. Acta Physica Sinica, 2007, 56(8): 4778-4784. doi: 10.7498/aps.56.4778
    [11] Zhang Min, Wu Zhen-Sen. The moments analysis of the pulse propagation through plasma medium and its applications. Acta Physica Sinica, 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [12] Splitting of ultrashort laser pulses propagating in plasmas and the generation of soliton-like structures. Acta Physica Sinica, 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [13] Tian Yang-Meng, Wang Cai-Xia, Jiang Ming, Cheng Xin-Lu, Yang Xiang-Dong. State equation of inert plasma. Acta Physica Sinica, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [14] Zhang Li, Li Xiang-Dong, Jiang Xin-Ge. Plasma effect on the Kα group emission of He-like neon. Acta Physica Sinica, 2006, 55(9): 4501-4505. doi: 10.7498/aps.55.4501
    [15] Xie Hong-Quan, Liu Pu-Kun. Dispersion equation of a helical slow wave structure filled with magnetized plasma. Acta Physica Sinica, 2006, 55(5): 2397-2402. doi: 10.7498/aps.55.2397
    [16] Huang Qin-Chao, Luo Jia-Rong, Wang Hua-Zhong, Li Chong. Quick identification of EAST plasma discharge shape. Acta Physica Sinica, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [17] Liu Shao-Bin, Zhu Chuan-Xi, Yuan Nai-Chang. FDTD simulation for plasma photonic crystals. Acta Physica Sinica, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [18] Song Xiao-Peng, Chen Rong, Bao Cheng-Yu, Wang De-Wu. Dual extraction and collection of ions by parallel electrode method. Acta Physica Sinica, 2005, 54(9): 4198-4202. doi: 10.7498/aps.54.4198
    [19] Zheng Zhi-Yuan, Lu Xin, Zhang Jie, Hao Zuo-Qiang, Yuan Xiao-Hui, Wang Zhao-Hua. Experimental study on the momentum coupling efficiency of laser plasma. Acta Physica Sinica, 2005, 54(1): 192-196. doi: 10.7498/aps.54.192
    [20] Zhang Ke-Yan. Phase transition speed research of metal material at laser irradiation medium strength. Acta Physica Sinica, 2004, 53(6): 1815-1819. doi: 10.7498/aps.53.1815
Metrics
  • Abstract views:  5394
  • PDF Downloads:  283
  • Cited By: 0
Publishing process
  • Received Date:  08 November 2017
  • Accepted Date:  02 January 2018
  • Published Online:  20 March 2019

/

返回文章
返回