Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Visible light emission from surface of nickel bombarded by slow Xeq+ (4 q 20) ion

Xu Qiu-Mei Yang Zhi-Hu Guo Yi-Pan Liu Hui-Ping Chen Yan-Hong Zhao Hong-Yun

Citation:

Visible light emission from surface of nickel bombarded by slow Xeq+ (4 q 20) ion

Xu Qiu-Mei, Yang Zhi-Hu, Guo Yi-Pan, Liu Hui-Ping, Chen Yan-Hong, Zhao Hong-Yun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Bombarded by slow highly charged ion (SHCI), particles including ions and atoms of metal are excited and ejected from the sample. Optical emission can be observed for the radiative de-excitation of some excited atomic particles. The important information about particle ejection and incident ion neutralization, as well as the nature, the kinetic energy, and the number of the sputtered excited particles can be obtained by studying the optical emission process. The optical emission from the the collisions between slow (V~0.38 VBohr) highly charged Xeq+ (4 q 20) ions and high purity Ni (99.995%) surface is studied. The experiment is carried out at the 320 kV for multi-discipline research with HCIs in the Institute of Modern Physics, Chinese Academy of Sciences. The spectral lines are analyzed by using an Sp-2558 spectrometer equipped with a pattern of 1200 groves/mm blazed at 500 nm and an R955 photomultiplier tube at the exit slit. The target beam current corresponding to the dwell time is recorded, which can be translated into the incident ion current. Based on the formula of Y=N/(t/Ceq), the spectral line intensity is normalized. The normalized spectrum can be obtained from the interaction of 0.38VBohr Xe20+ ions with Ni surface in a wavelength range of 400-510 nm. The species at excited state can be identified by comparing the wavelengths of spectral lines with those in the standard spectroscopic table. Most of the observed spectral lines are identified as being from the electron transitions of Ni I 3d9(2D)4p-3d9(2D5/2)4d, Ni I 3d8(3F)4s4p(3P)-3d84s(4F)5s and Ni Ⅱ 3p63d9-3p63d8(3P)4s, as well as Xe I 5p5(2P3/2)6s-5p5(2P3/2)8p, Xe Ⅱ 5p4(3P2)6p-5p4(3P2)6d and Xe Ⅲ 5s25p3(2D)6s-5s25p3(2D)6p. Compared with the single charged ion, some neutralized incident ions yield Xe I, Xe Ⅱ, Xe Ⅲ spectral lines. The photon yields of spectral lines, such as Xe Ⅱ 410.419, Xe Ⅲ 430.444, Xe Ⅱ 434.200, Xe Ⅱ 486.254, Ni I 498.245, Ni I 501.697, Ni I 503.502, Ni I 505.061 and Ni I 508.293 nm, are presented each as a function of charge state of incident ion. The results show that the photon yield increases with the increase of the charge state, which is consistent with the potential energy of the incident ion. The potential energy is the driving force for photon emission of excited Ni atom. The neutralization of Xeq+ is in good agreement with that indicated by the classical over-the-barrier model.
      Corresponding author: Yang Zhi-Hu, z.yang@impcas.ac.cn
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1732269).
    [1]

    Schneider D H G, Briere M A 1996 Phys. Scr. 53 228

    [2]

    Wang G H 1988 Physics of Particle Interactions with Solids (Part 1) (Beijing:Scientific Press) pp267-346 (in Chinese)[王广厚 1988 粒子同固体相互作用物理学(上册) (北京:科学出版社) 第267346页]

    [3]

    Burgdorfer J, Morgenstern R, Niehaus A 1986 J. Phys.B:At. Mol. Phys. 19 L507

    [4]

    Burgdorfer J, Reinhold C, Hagg L, Meyer F 1996 Aust. J. Phys. 49 527

    [5]

    Winter H, Aumayr F 1999 J. Phys. B 32 R39

    [6]

    Bethe H A, Salpeter E E 1957 Encyclopedia of Physics (Handbuch der Physik) (Berlin, Heidelberg:Springer) pp334-409

    [7]

    Schenkel T, Barnes A V, Niedermayr T R, Hattass M, Newman M W, Machicoane G A, McDonald J W, Hamza A V, Schneider D H 1999 Phys. Rev. Lett. 83 4273

    [8]

    Burgdorfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674

    [9]

    Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Prog. Surf. Sci. 61 23

    [10]

    Lemell C, Winter H P, Aumayr F, Burgdorfer J, Meyer F 1996 Phys. Rev. A 53 880

    [11]

    Sun L T, Zhao H W, Li J Y, Wang H, Ma B H, Zhang Z M, Zhang X Z, Guo X H, Shang Y, Li X X, Feng Y C, Zhu Y H, Wang P Z, Liu H P, Song M T, Ma X W, Zhan W L 2007 Nucl. Instrum. Methods B 263 503

    [12]

    Zhao H, Su H, Xu Q, Guo Y, Kong J, Qian Y, Yang Z 2014 J. Phys.:Conf. Ser. 488 142012

    [13]

    Roger K, Kerkdijk C B 1974 Surf. Sci. 46 537

    [14]

    Wright R B, Gruen D M 1980 Nucl. Instrum. Methods 170 577

    [15]

    Delaunay M, Fehringer M, Geller R, Hitz D, Varga P, Winter H 1987 Phys. Rev. B 35 4232

    [16]

    Della-Negra S, Depauw J, Joret H, Le Beyec Y, Schweikert E A 1988 Phys. Rev. Lett. 60 948

    [17]

    Aumayr F, Kurz H, Schneider D, Briere M, Mcdonald J, Cunningham C, Winter H P 1993 Phys. Rev. Lett. 71 1943

    [18]

    Krsa J, Lska L, Stckli M P, Fehrenbach C W 2002 Nucl. Instrum. Methods B 196 61

    [19]

    Andersen N, Andersen B, Veje E 1982 Radiat. Eff. 60 119

    [20]

    Braun M 1979 Phys. Scr. 19 33

    [21]

    White C W, Tolk N H 1971 Phys. Rev. Lett. 26 486

    [22]

    Ryabchikova T A, Landstreet J D, Gelbmann M J, Bolgova G T, Tsymbal V V, Weiss W W 1997 Astron. Astrophys. 327 1137

    [23]

    Cowley C R, Mathys G 1998 Astron. Astrophys. 339 165

    [24]

    Cowley C R, Hubrig S 2012 Astron. Nachr. AN 333 34

    [25]

    Yong D, Brito A A, Costa G S D, Alonso-Garca J, Karakas A I, Pignatari M, Roederer I U, Aoki W, Fishlock C K, Grundahl F, Norris J E 2014 Mon. Not. R. Astron. Soc. 439 2638

    [26]

    Carraro G, Villanova S, Monaco L, Beccari G, Ahumada J A, Boffin H M J 2014 Astron. Astrophys. 562 A39

    [27]

    Fuhr J R, Martin G A, Wlese W L, Younger S M 1981 J. Phys. Chem. Ref. 10 305

    [28]

    Morishita Y, Kanai Y, Ando K, Hutton R, Brage T, Torii H A, Komaki K, Masuda H, Ishii K, Rosmej F B, Yamazaki Y 2003 Nucl. Instrum. Methods B 205 758

    [29]

    Lake R E, Pomeroy J M, Sosolik C E 2011 Nucl. Instrum. Methods B 269 1199

    [30]

    Miller M H, Roig R A, Bengtson R D 1973 Phys. Rev. A 8 480

    [31]

    Jimenez E, Campos J, Sanchezdel R C 1974 J. Opt. Soc. Am. 64 1009

    [32]

    Coetzer F J, Westhuizen P 1980 Z. Physik A 294 199

    [33]

    Pegg D J, Gaillard M L, Bingham C R, Carter H K, Mlekodaj R L 1982 Nucl. Instrum. Methods 202 153

    [34]

    Das M B, Karmakar S 2005 Eur. Phys. J. D 32 285

    [35]

    Suchanska M 1997 Prog. Surf. Sci. 54 165

    [36]

    Tribble R E, Prior M H, Stokstad R G 1990 Nucl. Instrum. Methods B 44 412

    [37]

    Postawa Z, Rutkowski J, Poradzisz A, Czuba P, Szymonski M 1986 Nucl. Instrum. Methods B 18 574

    [38]

    Assad C, Liu W, Tribble R E 1991 Nucl. Instrum. Methods B 62 201

    [39]

    Veje E 1983 Phys. Rev. B 28 88

    [40]

    Veje E 1983 Phys. Rev. B 28 5029

    [41]

    Veje E 1988 Z. Phys. B:Condens. Matter 70 55

    [42]

    Takahashi S, Nagata K, Tona M, Sakurai M, Naka-mura N, Yamada C, Ohtani S 2005 Surf. Sci. 593 318

    [43]

    Makoto S, Kouji S, Takahiro M 2016 J. Surf. Sci. Nanotechnol. 14 1

  • [1]

    Schneider D H G, Briere M A 1996 Phys. Scr. 53 228

    [2]

    Wang G H 1988 Physics of Particle Interactions with Solids (Part 1) (Beijing:Scientific Press) pp267-346 (in Chinese)[王广厚 1988 粒子同固体相互作用物理学(上册) (北京:科学出版社) 第267346页]

    [3]

    Burgdorfer J, Morgenstern R, Niehaus A 1986 J. Phys.B:At. Mol. Phys. 19 L507

    [4]

    Burgdorfer J, Reinhold C, Hagg L, Meyer F 1996 Aust. J. Phys. 49 527

    [5]

    Winter H, Aumayr F 1999 J. Phys. B 32 R39

    [6]

    Bethe H A, Salpeter E E 1957 Encyclopedia of Physics (Handbuch der Physik) (Berlin, Heidelberg:Springer) pp334-409

    [7]

    Schenkel T, Barnes A V, Niedermayr T R, Hattass M, Newman M W, Machicoane G A, McDonald J W, Hamza A V, Schneider D H 1999 Phys. Rev. Lett. 83 4273

    [8]

    Burgdorfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674

    [9]

    Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Prog. Surf. Sci. 61 23

    [10]

    Lemell C, Winter H P, Aumayr F, Burgdorfer J, Meyer F 1996 Phys. Rev. A 53 880

    [11]

    Sun L T, Zhao H W, Li J Y, Wang H, Ma B H, Zhang Z M, Zhang X Z, Guo X H, Shang Y, Li X X, Feng Y C, Zhu Y H, Wang P Z, Liu H P, Song M T, Ma X W, Zhan W L 2007 Nucl. Instrum. Methods B 263 503

    [12]

    Zhao H, Su H, Xu Q, Guo Y, Kong J, Qian Y, Yang Z 2014 J. Phys.:Conf. Ser. 488 142012

    [13]

    Roger K, Kerkdijk C B 1974 Surf. Sci. 46 537

    [14]

    Wright R B, Gruen D M 1980 Nucl. Instrum. Methods 170 577

    [15]

    Delaunay M, Fehringer M, Geller R, Hitz D, Varga P, Winter H 1987 Phys. Rev. B 35 4232

    [16]

    Della-Negra S, Depauw J, Joret H, Le Beyec Y, Schweikert E A 1988 Phys. Rev. Lett. 60 948

    [17]

    Aumayr F, Kurz H, Schneider D, Briere M, Mcdonald J, Cunningham C, Winter H P 1993 Phys. Rev. Lett. 71 1943

    [18]

    Krsa J, Lska L, Stckli M P, Fehrenbach C W 2002 Nucl. Instrum. Methods B 196 61

    [19]

    Andersen N, Andersen B, Veje E 1982 Radiat. Eff. 60 119

    [20]

    Braun M 1979 Phys. Scr. 19 33

    [21]

    White C W, Tolk N H 1971 Phys. Rev. Lett. 26 486

    [22]

    Ryabchikova T A, Landstreet J D, Gelbmann M J, Bolgova G T, Tsymbal V V, Weiss W W 1997 Astron. Astrophys. 327 1137

    [23]

    Cowley C R, Mathys G 1998 Astron. Astrophys. 339 165

    [24]

    Cowley C R, Hubrig S 2012 Astron. Nachr. AN 333 34

    [25]

    Yong D, Brito A A, Costa G S D, Alonso-Garca J, Karakas A I, Pignatari M, Roederer I U, Aoki W, Fishlock C K, Grundahl F, Norris J E 2014 Mon. Not. R. Astron. Soc. 439 2638

    [26]

    Carraro G, Villanova S, Monaco L, Beccari G, Ahumada J A, Boffin H M J 2014 Astron. Astrophys. 562 A39

    [27]

    Fuhr J R, Martin G A, Wlese W L, Younger S M 1981 J. Phys. Chem. Ref. 10 305

    [28]

    Morishita Y, Kanai Y, Ando K, Hutton R, Brage T, Torii H A, Komaki K, Masuda H, Ishii K, Rosmej F B, Yamazaki Y 2003 Nucl. Instrum. Methods B 205 758

    [29]

    Lake R E, Pomeroy J M, Sosolik C E 2011 Nucl. Instrum. Methods B 269 1199

    [30]

    Miller M H, Roig R A, Bengtson R D 1973 Phys. Rev. A 8 480

    [31]

    Jimenez E, Campos J, Sanchezdel R C 1974 J. Opt. Soc. Am. 64 1009

    [32]

    Coetzer F J, Westhuizen P 1980 Z. Physik A 294 199

    [33]

    Pegg D J, Gaillard M L, Bingham C R, Carter H K, Mlekodaj R L 1982 Nucl. Instrum. Methods 202 153

    [34]

    Das M B, Karmakar S 2005 Eur. Phys. J. D 32 285

    [35]

    Suchanska M 1997 Prog. Surf. Sci. 54 165

    [36]

    Tribble R E, Prior M H, Stokstad R G 1990 Nucl. Instrum. Methods B 44 412

    [37]

    Postawa Z, Rutkowski J, Poradzisz A, Czuba P, Szymonski M 1986 Nucl. Instrum. Methods B 18 574

    [38]

    Assad C, Liu W, Tribble R E 1991 Nucl. Instrum. Methods B 62 201

    [39]

    Veje E 1983 Phys. Rev. B 28 88

    [40]

    Veje E 1983 Phys. Rev. B 28 5029

    [41]

    Veje E 1988 Z. Phys. B:Condens. Matter 70 55

    [42]

    Takahashi S, Nagata K, Tona M, Sakurai M, Naka-mura N, Yamada C, Ohtani S 2005 Surf. Sci. 593 318

    [43]

    Makoto S, Kouji S, Takahiro M 2016 J. Surf. Sci. Nanotechnol. 14 1

  • [1] Shi Lu-Lin, Cheng Rui, Wang Zhao, Cao Shi-Quan, Yang Jie, Zhou Ze-Xian, Chen Yan-Hong, Wang Guo-Dong, Hui De-Xuan, Jin Xue-Jian, Wu Xiao-Xia, Lei Yu, Wang Yu-Yu, Su Mao-Gen. Experimental setup for interaction between highly charged ions and laser-produced plasma near Bohr velocity energy region. Acta Physica Sinica, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [2] Zhang Da-Cheng, Ge Han-Xing, Ba Yu-Lu, Wen Wei-Qiang, Zhang Yi, Chen Dong-Yang, Wang Han-Bing, Ma Xin-Wen. Prospect for attosecond laser spectra of highly charged ions. Acta Physica Sinica, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [3] Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen. Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+. Acta Physica Sinica, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [4] Zhang Bing-Zhang, Song Zhang-Yong, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Xu Jun-Kui, Feng Yong, Zhu Zhi-Chao, Guo Yan-Ling, Chen Lin, Sun Liang-Ting, Yang Zhi-Hu, Yu De-Yang. X-ray emission produced by interaction of slow highly charged ${\boldsymbol{ {\rm{O}}^{q+}}}$ ions with Al surfaces. Acta Physica Sinica, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [5] Bian Xiao-Ge, Zhou Sheng, Zhang Lei, He Tian-Bo, Li Jin-Song. NO2 gas detection based on standard sample regression algorithm and cavity enhanced spectroscopy. Acta Physica Sinica, 2021, 70(5): 050702. doi: 10.7498/aps.70.20201322
    [6] Spectral Calibration for Electron Beam Ion Trap and Precision Measurement of M1 Transition Wavelength in Ar13+. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211663
    [7] Zhang Xiao-An, Mei Ce-Xiang, Zhang Ying, Liang Chang-Hui, Zhou Xian-Ming, Zeng Li-Xia, Li Yao-Zong, Liu Yu, Xiang Qian-Lan, Meng Hui, Wang Yi-Jun. 129Xeq+ induced near-infrared light and X-ray emission at Cu surface. Acta Physica Sinica, 2020, 69(21): 213301. doi: 10.7498/aps.69.20200500
    [8] Yang Zhao-Rui, Zhang Xiao-An, Xu Qiu-Mei, Yang Zhi-Hu. Visible light emission produced by interaction of highly ionized Krq+ ions with a Al surface. Acta Physica Sinica, 2013, 62(4): 043401. doi: 10.7498/aps.62.043401
    [9] Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Liang Chang-Hui, Cheng Rui, Zhou Xian-Ming, Wang Xing, Lei Yu, Sun Yuan-Bo, Xu Ge, Li Jin-Yu, Xiao Guo-Qing. Thresholds for kinetic and potential energies of Arq+ induced Au target atomic M-X rays emission. Acta Physica Sinica, 2012, 61(11): 113401. doi: 10.7498/aps.61.113401
    [10] Meng Xian-Zhu, Wang Ming-Hong, Ren Zhong-Min. Analysis of high brightness laser synchrotron source based on the technique of oval supercavity. Acta Physica Sinica, 2010, 59(3): 1638-1642. doi: 10.7498/aps.59.1638
    [11] Zhang Li-Qing, Zhang Chong-Hong, Yang Yi-Tao, Yao Cun-Feng, Sun You-Mei, Li Bing-Sheng, Zhao Zhi-Ming, Song Shu-Jian. Surface morphology of GaN bombarded by highly charged 126Xeq+ ions. Acta Physica Sinica, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [12] Xu Zhong-Feng, Liu Li-Li, Zhao Yong-Tao, Chen Liang, Zhu Jian, Wang Yu-Yu, Xiao Guo-Qing. Highly charged ion beam-induced size modification of Au nanoparticles. Acta Physica Sinica, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [13] Zhang Xiao-An, Yang Zhi-Hu, Wang Dang-Chao, Mei Ce-Xiang, Niu Chao-Ying, Wang Wei, Dai Bin, Xiao Guo-Qing. Cobalt-like-Xe-induced infrared light and x-ray emission at Ni surface. Acta Physica Sinica, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [14] Peng Hai-Bo, Wang Tie-Shan, Han Yun-Cheng, Ding Da-Jie, Xu He, Cheng Rui, Zhao Yong-Tao, Wang Yu-Yu. Study of channeling effect by impact of highly charged ions on crystal surface of Si(110). Acta Physica Sinica, 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [15] Wang Li, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The coulomb potential energy effect on the intensity of the characteristic lines at highly charged ion incendence on Al surface. Acta Physica Sinica, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [16] Zhao Yong-Tao, Xiao Guo-Qing, Xu Zhong-Feng, Abdul Qayyum, Wang Yu-Yu, Zhang Xiao-An, Li Fu-Li, Zhan Wen-Long. The electron emission yield induced by the interaction of highly charged argon ions with silicon surface. Acta Physica Sinica, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [17] Wang Yu-Yu, Zhao Yong-Tao, Xiao Guo-Qing, Fang Yan, Zhang Xiao-An, Wang Tie-Shan, Wang Shi-Wei, Peng Hai-Bo. Electron emission induced by the interaction of highly charged ions 207Pbq+(24≤q≤36) with solid surface of Si(110). Acta Physica Sinica, 2006, 55(2): 673-676. doi: 10.7498/aps.55.673
    [18] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [19] Zhang Xiao-An, Zhao Yong-Tao, Li Fu-Li, Yang Zhi-Hu, Xiao Guo-Qing, Zhan Wen-Long. Atomic and ionic light emission spectra of dipole transition and forbidden transition induced by the impact of 126Xe30+ on Ni solid surface. Acta Physica Sinica, 2004, 53(10): 3341-3346. doi: 10.7498/aps.53.3341
    [20] WEN JING, SUN WEI-GUO, FENG HAO. STUDY ON THE POTENTIAL ENERGY CURVES OF ALKALI DIATOMIC MOLECULES WITH ENERGY CO NSISTENT METHOD. Acta Physica Sinica, 2000, 49(12): 2352-2356. doi: 10.7498/aps.49.2352
Metrics
  • Abstract views:  4315
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  02 December 2017
  • Accepted Date:  13 February 2018
  • Published Online:  20 April 2019

/

返回文章
返回