Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of hydrogen storage properties of silicene under different Li adsorption components

Sheng Zhe Dai Xian-Ying Miao Dong-Ming Wu Shu-Jing Zhao Tian-Long Hao Yue

Citation:

First-principles study of hydrogen storage properties of silicene under different Li adsorption components

Sheng Zhe, Dai Xian-Ying, Miao Dong-Ming, Wu Shu-Jing, Zhao Tian-Long, Hao Yue
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Alkali metal has predicted to be a promising candidate for decorating silicene surface to obtain the high hydrogen storage capacity, owing to their physical properties of lightweight, lower cohesive energy, and appropriate strength of the interaction with H2 molecules. However, though the high potential in hydrogen storage of alkali metal adatoms-decorated silicene under the fixed adatom adsorption component is well known, the evidence for the hydrogen storage capacity of alkali metal adatoms-decorated silicene under different adatom adsorption components remains largely unexplored, which may be of great significance to make the most advantages of alkali metal adatoms-decorated silicene in hydrogen storage aspects. Herein, according to the first-principles calculation corrected by the van der Waals effect, we take Li-decorated silicene for example and perform the detailed study of the geometry structure, the stability and the hydrogen storage capacity of silicene under different Li adsorption components (LixSi1-x), aiming to maximize the hydrogen storage performance of Li-decorated silicene. The results show that the preferred site of Li changes from the hollow site to the valley site as the Li component increases from 0.11 to 0.50, and binding energy of Li is always greater than the corresponding cohesive energy, showing the high stability of Li-decorated silicene and the feasibility of the method to obtain a higher hydrogen storage capacity by increasing the Li component. The hydrogen storage of silicene under different Li adsorption components is investigated by the sequential addition of H2 molecules nearby Li atoms in a stepwise manner. It can be observed that the hydrogen storage capacity of Li-decorated silicene increases and the average adsorption energy decreases with the increase of the Li component. The corresponding hydrogen storage capacities of Li0.11Si0.89, Li0.20Si0.80, Li0.33Si0.67, Li0.43Si0.57 can reach up to 2.54 wt%, 4.82 wt%, 6.00 wt% and 9.58 wt% with 0.58 eV/H2, 0.47 eV/H2, 0.54 eV/H2 and 0.41 eV/H2 average adsorption energy, respectively. When the Li component increases up to 0.50, Li atoms are saturated with a maximum hydrogen storage capacity of 11.46 wt% and an average adsorption energy of 0.34 eV/H2, which well meet the hydrogen storage standard set by the U.S. Department of Energy and mean that the hydrogen storage can be theoretically improved by increasing the Li adsorption component to a saturated level. Furthermore, we analyze the Mulliken charge population, the charge density difference and the density of states, showing that the charge-induced electrostatic interaction and the orbital hybridization are the key factors for the hydrogen adsorption of Li-decorated silicene. Our results may enhance our fundamental understanding of the hydrogen storage mechanism and explore the applications in areas of hydrogen storage for Li-decorated silicene, which are of great importance for the usage of hydrogen in the future.
      Corresponding author: Dai Xian-Ying, xydai@xidian.edu.cn
    • Funds: Project supported by the Advance Research Foundation of China (Grant No. 9140A08020115DZ01024), the Fundamental Research Funds for the Central Universities of China (Grant Nos. XJS17061, JBX171102), the China Postdoctoral Science Foundation (Grant No. 2017M613061), and the 111 Project, China (Grant No. B12026).
    [1]

    Cheng J Y, Chan M K Y, Lilley C M 2016 Appl. Phys. Lett. 109 133111

    [2]

    Zhou J Q, Bournel A, Wang Y, Lin X Y, Zhang Y, Zhao W S 2017 Appl. Phys. Lett. 111 182408

    [3]

    Yang S, Cheng P, Chen L, Wu K H 2017 Acta Phys. Sin. 66 216805 (in Chinese)[杨硕, 程鹏, 陈岚, 吴克辉 2017 物理学报 66 216805]

    [4]

    Hussain T, Kaewmaraya T, Chakraborty S, Ahuja R 2016 J. Phys. Chem. C 120 25256

    [5]

    Li C, Yang S X, Li S S, Xia J B, Li J B 2013 J. Phys. Chem. C 117 483

    [6]

    Li F, Zhang C W, Ji W X, Zhao M W 2015 Phys. Status Solidi B 252 2072

    [7]

    Zhao J J, Liu H S, Yu Z M, Quhe R G, Zhou S, Wang Y Y, Liu C C, Zhong H X, Han N N, Lu J, Yao Y G, Wu K H 2016 Prog. Mater. Sci. 83 24

    [8]

    Hussain T, Chakraborty S, De Sarkar A, Johansson B, Ahuja R 2014 Appl. Phys. Lett. 105 123903

    [9]

    Wang Y S, Zheng R, Gao H Y, Zhang J, Xu B, Sun Q, Jia Y 2014 Int. J. Hydrogen Energy 39 14027

    [10]

    Wang J, Li J B, Li S S, Liu Y 2013 J. Appl. Phys. 114 124309

    [11]

    Ariharan A, Viswanathan B, Nandhakumar V 2017 Graphene 6 41

    [12]

    Lochan R C, Head Gordon M 2006 Phys. Chem. Chem. Phys. 8 1357

    [13]

    Song E H, Yoo S H, Kim J J, Lai S W, Jiang Q, Cho S O 2014 Phys. Chem. Chem. Phys. 16 23985

    [14]

    Li F, Zhang C W, Luan H X, Wang P J 2013 J. Nanopart. Res. 15 1972

    [15]

    Molle A, Grazianetti C, Cinquanta E 2016 ECS Trans. 75 703

    [16]

    Zhong S Y, Ning F H, Rao F Y, Lei X L, Wu M S, Zhou L 2016 Int. J. Mod. Phys. B 30 1650176

    [17]

    Hussain T, Kaewmaraya T, Chakraborty S, Ahuja R 2013 Phys. Chem. Chem. Phys. 15 18900

    [18]

    Zhou C Y, Szpunar J A 2016 ACS Appl. Mater. Interfaces 8 25933

    [19]

    Ma L, Zhang J M, Xu K W, Ji V 2015 Physica E 66 40

    [20]

    Fair K M, Cui X Y, Li L, Shieh C C, Zheng R K, Liu Z W, Delley B, Ford M J, Ringer S P, Stampfl C 2013 Phys. Rev. B 87 014102

    [21]

    Wang Y S, Li M, Wang F, Sun Q, Jia Y 2012 Phys. Lett. A 376 631

    [22]

    Hussain T, Chakraborty S, Ahuja R 2013 ChemPhys-Chem 14 3463

    [23]

    Delley B 2000 J. Chem. Phys. 113 7756

    [24]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B 48 4978

    [25]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [26]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [27]

    Chadi D J 1977 Phys. Rev. B 16 1746

    [28]

    Huang Y P, Yuan J M, Guo G, Mao Y L 2015 Acta Phys. Sin. 64 013101 (in Chinese)[黄艳平, 袁健美, 郭刚, 毛宇亮 2015 物理学报 64 013101]

    [29]

    Tritsaris G A, Kaxiras E, Meng S, Wang E G 2013 Nano Lett. 13 2258

    [30]

    Liu C S, Zeng Z 2010 Appl. Phys. Lett. 96 123101

  • [1]

    Cheng J Y, Chan M K Y, Lilley C M 2016 Appl. Phys. Lett. 109 133111

    [2]

    Zhou J Q, Bournel A, Wang Y, Lin X Y, Zhang Y, Zhao W S 2017 Appl. Phys. Lett. 111 182408

    [3]

    Yang S, Cheng P, Chen L, Wu K H 2017 Acta Phys. Sin. 66 216805 (in Chinese)[杨硕, 程鹏, 陈岚, 吴克辉 2017 物理学报 66 216805]

    [4]

    Hussain T, Kaewmaraya T, Chakraborty S, Ahuja R 2016 J. Phys. Chem. C 120 25256

    [5]

    Li C, Yang S X, Li S S, Xia J B, Li J B 2013 J. Phys. Chem. C 117 483

    [6]

    Li F, Zhang C W, Ji W X, Zhao M W 2015 Phys. Status Solidi B 252 2072

    [7]

    Zhao J J, Liu H S, Yu Z M, Quhe R G, Zhou S, Wang Y Y, Liu C C, Zhong H X, Han N N, Lu J, Yao Y G, Wu K H 2016 Prog. Mater. Sci. 83 24

    [8]

    Hussain T, Chakraborty S, De Sarkar A, Johansson B, Ahuja R 2014 Appl. Phys. Lett. 105 123903

    [9]

    Wang Y S, Zheng R, Gao H Y, Zhang J, Xu B, Sun Q, Jia Y 2014 Int. J. Hydrogen Energy 39 14027

    [10]

    Wang J, Li J B, Li S S, Liu Y 2013 J. Appl. Phys. 114 124309

    [11]

    Ariharan A, Viswanathan B, Nandhakumar V 2017 Graphene 6 41

    [12]

    Lochan R C, Head Gordon M 2006 Phys. Chem. Chem. Phys. 8 1357

    [13]

    Song E H, Yoo S H, Kim J J, Lai S W, Jiang Q, Cho S O 2014 Phys. Chem. Chem. Phys. 16 23985

    [14]

    Li F, Zhang C W, Luan H X, Wang P J 2013 J. Nanopart. Res. 15 1972

    [15]

    Molle A, Grazianetti C, Cinquanta E 2016 ECS Trans. 75 703

    [16]

    Zhong S Y, Ning F H, Rao F Y, Lei X L, Wu M S, Zhou L 2016 Int. J. Mod. Phys. B 30 1650176

    [17]

    Hussain T, Kaewmaraya T, Chakraborty S, Ahuja R 2013 Phys. Chem. Chem. Phys. 15 18900

    [18]

    Zhou C Y, Szpunar J A 2016 ACS Appl. Mater. Interfaces 8 25933

    [19]

    Ma L, Zhang J M, Xu K W, Ji V 2015 Physica E 66 40

    [20]

    Fair K M, Cui X Y, Li L, Shieh C C, Zheng R K, Liu Z W, Delley B, Ford M J, Ringer S P, Stampfl C 2013 Phys. Rev. B 87 014102

    [21]

    Wang Y S, Li M, Wang F, Sun Q, Jia Y 2012 Phys. Lett. A 376 631

    [22]

    Hussain T, Chakraborty S, Ahuja R 2013 ChemPhys-Chem 14 3463

    [23]

    Delley B 2000 J. Chem. Phys. 113 7756

    [24]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B 48 4978

    [25]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [26]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [27]

    Chadi D J 1977 Phys. Rev. B 16 1746

    [28]

    Huang Y P, Yuan J M, Guo G, Mao Y L 2015 Acta Phys. Sin. 64 013101 (in Chinese)[黄艳平, 袁健美, 郭刚, 毛宇亮 2015 物理学报 64 013101]

    [29]

    Tritsaris G A, Kaxiras E, Meng S, Wang E G 2013 Nano Lett. 13 2258

    [30]

    Liu C S, Zeng Z 2010 Appl. Phys. Lett. 96 123101

  • [1] Wu Yu-Yang, Li Wei, Ren Qing-Ying, Li Jin-Ze, Xu Wei, Xu Jie. First-principles study on adsorption of gas molecules by metal Sc modified Ti2CO2. Acta Physica Sinica, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [2] Mo Qiu-Yan, Zhang Song, Jing Tao, Zhang Hong-Yun, Li Xian-Xu, Wu Jia-Yin. First-principles study of surface modification of CuSe. Acta Physica Sinica, 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [3] Zhang Jiang-Lin, Wang Zhong-Min, Wang Dian-Hui, Hu Chao-Hao, Wang Feng, Gan Wei-Jiang, Lin Zhen-Kun. First principles study of V/Pd interface interactions and their hydrogen absorption properties. Acta Physica Sinica, 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [4] Li Jun-Wei, Jia Wei-Min, Lü Sha-Sha, Wei Ya-Xuan, Li Zheng-Cao, Wang Jin-Tao. First principles study of hydrogen adsorption and dissociation behavior on γ-U (100)/Mo surface. Acta Physica Sinica, 2022, 71(22): 226601. doi: 10.7498/aps.71.20220631
    [5] Liu Kun, Wang Fu-He, Shang Jia-Xiang. First-principles study on the adsorption of oxygen at NiTi (110) surface. Acta Physica Sinica, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [6] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo. First-principles study on adsorption mechanism of hydrogen on tungsten trioxide surface. Acta Physica Sinica, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [7] Yang Guang-Min, Liang Zhi-Cong, Huang Hai-Hua. The first-principle calculation on the Li cluster adsorbed on graphene. Acta Physica Sinica, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [8] Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue. A first principles study on the active adsorbates on the hydrogenated diamond surface. Acta Physica Sinica, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [9] Jiang Xian-Wei, Lu Shi-Bin, Dai Guang-Zhen, Wang Jia-Yu, Jin Bo, Chen Jun-Ning. Research of data retention for charge trapping memory by first-principles. Acta Physica Sinica, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [10] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [11] Zhang Yang, Huang Yan, Chen Xiao-Shuang, Lu Wei. The study of oxygen and sulfur adsorption on the InSb (110) surface, using first-principle energy calculations. Acta Physica Sinica, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [12] Luo Qiang, Tang Bin, Zhang Zhi, Ran Zeng-Ling. First principles calculation of adsorption for H2S on Fe(100) surface. Acta Physica Sinica, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [13] Zhao Yu-Na, Gao Tao, Lü Jin-Zhong, Ma Jun-Gang. Thermodynamic properties of Li-N-H hydrogen storage: first-principles study. Acta Physica Sinica, 2013, 62(14): 143101. doi: 10.7498/aps.62.143101
    [14] Liu Yuan, Yao Jie, Chen Chi, Miao Ling, Jiang Jian-Jun. First-principles study on the piezoelectric properties of hydrogen modified graphene nanoribbons. Acta Physica Sinica, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [15] Fang Cai-Hong, Shang Jia-Xiang, Liu Zeng-Hui. Oxygen adsorption on Nb(110) surface by first-principles calculation. Acta Physica Sinica, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [16] Lu Jin-Lian, Cao Jue-Xian. A first-principles study of capacity and mechanism of a single titanium atom storing hydrogen. Acta Physica Sinica, 2012, 61(14): 148801. doi: 10.7498/aps.61.148801
    [17] Zhang Hui, Zhang Guo-Ying, Xiao Ming-Zhu, Lu Guang-Xia, Zhu Sheng-Long, Zhang Ke. First-principles study on influence of alloying element substitution on dehydrogenation ability of Li4BN3H10 hydrogen storage materials. Acta Physica Sinica, 2011, 60(4): 047109. doi: 10.7498/aps.60.047109
    [18] Chen Yu-Hong, Du Rui, Zhang Zhi-Long, Wang Wei-Chao, Zhang Cai-Rong, Kang Long, Luo Yong-Chun. First principles study of H2 molecule adsorption on Li3 N(110) surfaces. Acta Physica Sinica, 2011, 60(8): 086801. doi: 10.7498/aps.60.086801
    [19] Li Qi, Fan Guang-Han, Xiong Wei-Ping, Zhang Yong. First-principles calculations of ZnO polar surfaces and N adsorption mechanism. Acta Physica Sinica, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [20] Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Zheng Xin, Fang Yu-Chao, Gao Tao. First-pricinples design on atomic scale for new lightweight hydrogen storage materials. Acta Physica Sinica, 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
Metrics
  • Abstract views:  5080
  • PDF Downloads:  141
  • Cited By: 0
Publishing process
  • Received Date:  22 December 2017
  • Accepted Date:  14 March 2018
  • Published Online:  20 May 2019

/

返回文章
返回