Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In situ electron holography of magnetic skyrmions in nanostructures

Li Zi-An Chai Ke Zhang Ming Zhu Chun-Hui Tian Huan-Fang Yang Huai-Xin

Citation:

In situ electron holography of magnetic skyrmions in nanostructures

Li Zi-An, Chai Ke, Zhang Ming, Zhu Chun-Hui, Tian Huan-Fang, Yang Huai-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Understanding the correlations between magnetic skyrmions and the microstructural characteristics of the crystals that host skyrmions is a key issue for fundamental research and practical applications of novel type of magnetic materials. Magnetic skyrmion has received great attention due to its non-trivial topological properties and stability. Here we focus on two important points:1) dimensional confinement effects on magnetic skyrmions in magnetic nanostructures, specifically, the magnetic evolution, its related topological properties and energetic stability in confined nanostructured geometries; 2) effects of crystallographic defects on magnetic skyrmions, such as the pinning effect of magnetic skyrmion by crystal defects, and the effect of crystallographic-magnetic chirality reversal at crystal grain boundaries. For the study of dimensional effects on skyrmions in confined nanoscale geometries, we use state-of-the-art electron holography to directly image the morphology and nucleation of magnetic skyrmions in a wedge-shaped FeGe nanostripe that has a width in a range of 45-150 nm. Our experimental results reveal that geometrically-confined skyrmions are able to adopt a wide range of sizes and ellipticity in a nanostripe, which are not existent in thin films nor bulk materials and can be created from a helical magnetic state with a distorted edge twist in a simple and efficient manner. We further perform micromagnetic simulations to confirm our experimental results. The flexibility and ease of formation of geometrically confined magnetic skyrmions may help to optimize the design of skyrmion-based memory devices. For studying the effects of crystallographic defects on magnetic skyrmions, we use in situ Lorentz microscopy and off-axis electron holography to investigate the formation and characteristics of skyrmion lattice defects and their relationship to the underlying crystallographic structure of a B20 FeGe thin film. The measurements of spin configurations at grain boundaries reveal the crystallographic and magnetic chirality across adjacent grains, resulting in the formation of interface spin stripes at the grain boundaries. In the absence of material defects, our results show that skyrmion lattices possess dislocations and domain boundaries, in analogy to atomic crystals. Moreover, the distorted skyrmions can flexibly change their size and shape to accommodate local geometry, especially at sites of dislocations in the skyrmion lattice. These findings offer an insight into the elasticity of topologically protected skyrmions and their correlation with underlying material defects. Our electron holography results provide a quantitative determination of the fine skyrmionic spin textures in magnetic nanostructures. The resolved spin textures will be correlated with the material microstructures to provide important information about the relationship between the magnetic functions and the material microstructures. Our experiments also highlight the applicability of state-of-the-art electron holography for the study of complex spin textures in nanostructures.
      Corresponding author: Li Zi-An, zali79@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774403) and the National Key Research and Development Program of China (Grant Nos. 2017YFA0303000,2017YFA0302904).
    [1]

    Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241

    [2]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [3]

    Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915

    [4]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602

    [5]

    Jonietz F, Muhlbauer S, Pfleiderer C, Neubauer A, Mnzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648

    [6]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commum. 4 1463

    [7]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152

    [8]

    Bogdanov A N, Yablonskii D A 1989 Soc. Phys. JETP 68 101

    [9]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H., Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [10]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [11]

    Butenko A B, Leonov A A, Roessler U K, Bogdanov A N 2010 Phys. Rev. B 82 52403

    [12]

    Du H, Ning W, Tian M, Zhang Y 2013 Phys. Rev. B 87 014401

    [13]

    Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C. Q, Chen X H, Zang J, Zhang Y, Tian M 2015 Nat. Commun. 6 8504

    [14]

    Nagao M, So Y G, Yoshida H, Nagai T, Edagawa K, SaitKo T, Hara T, Yamazaki A, Kimoto K 2015 Appl. Phys. Express 8 033001

    [15]

    Lichte H, Lehmann M 2008 Rep. Prog. Phys. 71 16102

    [16]

    Dunin-Borkowski R E, Kasama K, Beleggia M, Pozzi G 2012 WILEY-VCH GmbH Co. KGaA

    [17]

    Teague M 1983 J. Opt. Soc. Am. 73 1434

    [18]

    Paganin D, Nugent K A 1998 Phys. Rev. Lett. 80 2586

    [19]

    Volkov V V, Zhu Y 2004 Ultramicroscopy 98 271

    [20]

    Cui J, Yao Y, Shen X, Wang Y G, Yu R C 2018 J. Magn. Magn. Mater. 454 304

    [21]

    Yu X Z, Mostovoy M, Tokunaga Y, Zhang W Z, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 PNAS 109 8856

    [22]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198

    [23]

    Wang W H, Zhang Y, Xu G Z, Peng L, Ding B, Wang Y, Hou Z P, Zhang X, Li X, Liu E K, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887

    [24]

    Chapman J N, Batson P E, Waddell E M, Ferrier R P 1978 Ultramicroscopy 3 203

    [25]

    McVitie S, McGrouther D, McFadzean S, MacLaren D A, OShea K J, Benitez M J 2015 Ultramicroscopy 152 57

    [26]

    McGrouther D, Lamb R J, Krajnak M, Mcfadzean S, Mcvitie S, Stamps R L, Leonov A O 2016 New J. Phys. 18 095004

    [27]

    Matsumoto T, So Y G, Kohno Y, Sawada H, Ikuhara Y, Shibata N 2016 Sci. Adv. 2 e1501280

    [28]

    Park H S, Yu X Z, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y 2014 Nat. Nanotech. 9 337

    [29]

    Shibata K, Kovcs A, Kiselev N S, Kanazawa N, Dunin-Borkowski R E, Tokura Y 2017 Phys. Rev. Lett. 118 087202

    [30]

    Kovcs A, Caron J, Savchenko A S, Kiselev N S, Shibata K, Li Z A, Kanazawa N, Tokura Y, Blgel S, Dunin-Borkowski R E 2017 Appl. Phys. Lett. 111 192410

    [31]

    Jin C, Li Z A, Kovcs A, Caron J, Zheng F, Rybakov F N, Kiselev N S, Du H, Blugel S, Tian M, Zhang Y, Farle M, Dunin-Borkowski R E 2017 Nat. Commun. 8 15569

    [32]

    Zheng F, Li H, Wang S, Song D, Jin C, Wei W, Kovacs A, Zang J, Tian M, Du H, Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205

    [33]

    Li Z A, Zheng F, Tavabi A H, Caron J, Jin C, Du H, Kovcs A, Tian M, Farle M, Dunin-Borkowski R E 2017 Nano Lett. 17 1395

    [34]

    Song D, Li Z A, Caron J, Kovcs A, Tian H, Jin C, Du H, Tian M, Li J, Zhu J, Dunin-Borkowski R E 2018 Phys. Rev. Lett. 120 167204

    [35]

    Zheng F, Rybakov F N, Borisov A B, Song D, Wang S, Li Z A, Du H, Kiselev N S, Caron J, Kovacs A, Tian M, Zhang Y, Blgel S, Dunin-Borkowski R E 2018 Nat. Nanotech. 13 451

    [36]

    Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422

    [37]

    Rybakov F N, Borisov A B, Bogdanov A N 2013 Phys. Rev. B 87 094424

    [38]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotech. B 8 839

    [39]

    Schwarze T, Waizner J, Garst M, Bauer A, Stasinopoulos I, Berger H, Pfleiderer C, Grundler D 2015 Nat. Mater. 14 478

  • [1]

    Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241

    [2]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [3]

    Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915

    [4]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602

    [5]

    Jonietz F, Muhlbauer S, Pfleiderer C, Neubauer A, Mnzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648

    [6]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commum. 4 1463

    [7]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152

    [8]

    Bogdanov A N, Yablonskii D A 1989 Soc. Phys. JETP 68 101

    [9]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H., Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [10]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [11]

    Butenko A B, Leonov A A, Roessler U K, Bogdanov A N 2010 Phys. Rev. B 82 52403

    [12]

    Du H, Ning W, Tian M, Zhang Y 2013 Phys. Rev. B 87 014401

    [13]

    Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C. Q, Chen X H, Zang J, Zhang Y, Tian M 2015 Nat. Commun. 6 8504

    [14]

    Nagao M, So Y G, Yoshida H, Nagai T, Edagawa K, SaitKo T, Hara T, Yamazaki A, Kimoto K 2015 Appl. Phys. Express 8 033001

    [15]

    Lichte H, Lehmann M 2008 Rep. Prog. Phys. 71 16102

    [16]

    Dunin-Borkowski R E, Kasama K, Beleggia M, Pozzi G 2012 WILEY-VCH GmbH Co. KGaA

    [17]

    Teague M 1983 J. Opt. Soc. Am. 73 1434

    [18]

    Paganin D, Nugent K A 1998 Phys. Rev. Lett. 80 2586

    [19]

    Volkov V V, Zhu Y 2004 Ultramicroscopy 98 271

    [20]

    Cui J, Yao Y, Shen X, Wang Y G, Yu R C 2018 J. Magn. Magn. Mater. 454 304

    [21]

    Yu X Z, Mostovoy M, Tokunaga Y, Zhang W Z, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 PNAS 109 8856

    [22]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198

    [23]

    Wang W H, Zhang Y, Xu G Z, Peng L, Ding B, Wang Y, Hou Z P, Zhang X, Li X, Liu E K, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887

    [24]

    Chapman J N, Batson P E, Waddell E M, Ferrier R P 1978 Ultramicroscopy 3 203

    [25]

    McVitie S, McGrouther D, McFadzean S, MacLaren D A, OShea K J, Benitez M J 2015 Ultramicroscopy 152 57

    [26]

    McGrouther D, Lamb R J, Krajnak M, Mcfadzean S, Mcvitie S, Stamps R L, Leonov A O 2016 New J. Phys. 18 095004

    [27]

    Matsumoto T, So Y G, Kohno Y, Sawada H, Ikuhara Y, Shibata N 2016 Sci. Adv. 2 e1501280

    [28]

    Park H S, Yu X Z, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y 2014 Nat. Nanotech. 9 337

    [29]

    Shibata K, Kovcs A, Kiselev N S, Kanazawa N, Dunin-Borkowski R E, Tokura Y 2017 Phys. Rev. Lett. 118 087202

    [30]

    Kovcs A, Caron J, Savchenko A S, Kiselev N S, Shibata K, Li Z A, Kanazawa N, Tokura Y, Blgel S, Dunin-Borkowski R E 2017 Appl. Phys. Lett. 111 192410

    [31]

    Jin C, Li Z A, Kovcs A, Caron J, Zheng F, Rybakov F N, Kiselev N S, Du H, Blugel S, Tian M, Zhang Y, Farle M, Dunin-Borkowski R E 2017 Nat. Commun. 8 15569

    [32]

    Zheng F, Li H, Wang S, Song D, Jin C, Wei W, Kovacs A, Zang J, Tian M, Du H, Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205

    [33]

    Li Z A, Zheng F, Tavabi A H, Caron J, Jin C, Du H, Kovcs A, Tian M, Farle M, Dunin-Borkowski R E 2017 Nano Lett. 17 1395

    [34]

    Song D, Li Z A, Caron J, Kovcs A, Tian H, Jin C, Du H, Tian M, Li J, Zhu J, Dunin-Borkowski R E 2018 Phys. Rev. Lett. 120 167204

    [35]

    Zheng F, Rybakov F N, Borisov A B, Song D, Wang S, Li Z A, Du H, Kiselev N S, Caron J, Kovacs A, Tian M, Zhang Y, Blgel S, Dunin-Borkowski R E 2018 Nat. Nanotech. 13 451

    [36]

    Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422

    [37]

    Rybakov F N, Borisov A B, Bogdanov A N 2013 Phys. Rev. B 87 094424

    [38]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotech. B 8 839

    [39]

    Schwarze T, Waizner J, Garst M, Bauer A, Stasinopoulos I, Berger H, Pfleiderer C, Grundler D 2015 Nat. Mater. 14 478

  • [1] Zhang Ying, Li Zhuo-Lin, Shen Bao-Gen. Research progress in the magnetic domain wall topology. Acta Physica Sinica, 2024, 73(1): 017504. doi: 10.7498/aps.73.20231612
    [2] Liu Xuan-Xuan, Guo Hong-Xuan, Xu Tao, Yin Kui-Bo, Sun Li-Tao. In-situ liquid phase transmission electron microscope and its application in nanoparticle characterization. Acta Physica Sinica, 2021, 70(8): 086701. doi: 10.7498/aps.70.20201899
    [3] Zhao Wei-Sheng, Huang Yang-Qi, Zhang Xue-Ying, Kang Wang, Lei Na, Zhang You-Guang. Overview and advances in skyrmionics. Acta Physica Sinica, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [4] Xia Jing, Han Zong-Yi, Song Yi-Fan, Jiang Wen-Jing, Lin Liu-Rong, Zhang Xi-Chao, Liu Xiao-Xi, Zhou Yan. Overview of magnetic skyrmion-based devices and applications. Acta Physica Sinica, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [5] Hu Yang-Fan, Wan Xue-Jin, Wang Biao. Magnetoelastic phenomena and mechanisms of magnetic skyrmion crystal. Acta Physica Sinica, 2018, 67(13): 136201. doi: 10.7498/aps.67.20180251
    [6] Liu Yi-Zhou, Zang Jiadong. Overview and outlook of magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [7] Kong Ling-Yao. Research progress on topological properties and micro-magnetic simulation study in dynamics of magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [8] Jin Chen-Dong, Song Cheng-Kun, Wang Jin-Shuai, Wang Jian-Bo, Liu Qing-Fang. Research progress of micromagnetic magnetic skyrmions and applications. Acta Physica Sinica, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [9] Xu Gui-Zhou, Xu Zhan, Ding Bei, Hou Zhi-Peng, Wang Wen-Hong, Xu Feng. Magnetic domain chirality and tuning of skyrmion topology. Acta Physica Sinica, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [10] Hou Zhi-Peng, Ding Bei, Li Hang, Xu Gui-Zhou, Wang Wen-Hong, Wu Guang-Heng. Observation of new-type magnetic skymrions with extremerely high temperature stability and fabrication of skyrmion-based race-track memory device. Acta Physica Sinica, 2018, 67(13): 137509. doi: 10.7498/aps.67.20180419
    [11] Zhang Chao, Fang Liang, Sui Bing-Cai, Xu Qiang, Wang Hui. Nano-scale lithography and in-situ electrical measurements based on the micro-chips in a transmission electron microscope. Acta Physica Sinica, 2014, 63(24): 248105. doi: 10.7498/aps.63.248105
    [12] Li Peng-Fei, Yan Xiao-Hong, Wang Ru-Zhi. . Acta Physica Sinica, 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
    [13] WANG ZHEN-XIA, RUAN MEI-LING, YANG JIN-QING, WANG WEN-MIN, YU GUO-QING. INVESTIGATION OF THE NOVEL CARBON NANOSTRUCTURES BY HIGH RESOLUTION ELECTRON MICROSCOPY. Acta Physica Sinica, 1999, 48(11): 2092-2097. doi: 10.7498/aps.48.2092
    [14] LI YI-JIE, XIONG GUANG-CHENG, GAN ZI-ZHAO, REN CONG-XIN, ZOU SHI-CHANG. TEM STUDY OF MICROSTRUCTURAL CHANGES INDUCED BY AR ION IMPLANTATION IN YBa2Cu3O7-x SUPERCONDUCTING FILMS. Acta Physica Sinica, 1993, 42(3): 482-487. doi: 10.7498/aps.42.482
    [15] LI LONG, LI FANG-HUA, YANG DA-YU, TIAN LING-HUA, LIN ZHEN-JIN. ELECTRON DIFFRACTION AND HIGH RESOLUTION MICRO-SCOPY STUDY ON INCOMMENSURATE MODULATED STRUCTURE IN Ce1+εFe4B4 ALLOY. Acta Physica Sinica, 1990, 39(5): 788-792. doi: 10.7498/aps.39.788
    [16] XU HUI-FANG, LUO GU-FENG, HU MEI-SHENG, CHEN JUN. HRTEM STUDY OF THE SUPERLATTICE ORTHOCLASE. Acta Physica Sinica, 1989, 38(9): 1527-1529. doi: 10.7498/aps.38.1527
    [17] ZHANG JING, LIU AN-SHENG, WU ZI-QIN, GUO KE-XIN. A TEM STUDY OF Pd-Si THIN FILM SOLID-PHASE REACTION. Acta Physica Sinica, 1986, 35(7): 965-968. doi: 10.7498/aps.35.965
    [18] CHENG PENG-ZHU, MA XIAO-HUA, LUO QI-GUANG, YANG DA-YU. THE PREPARATION OF TRANSMISSION ELECTRON MICROSCOPE SPECIMEN BY ELECTROLYTIC POLISHING METHOD. Acta Physica Sinica, 1981, 30(2): 286-290. doi: 10.7498/aps.30.286
    [19] GUO KE-XIN, LIN BAO-JUN. A TEM STUDY OF PARTIAL DISLOCATIONS IN A NICKEL-CHROMIUM ALLOY. Acta Physica Sinica, 1980, 29(4): 494-499. doi: 10.7498/aps.29.494
    [20] . Acta Physica Sinica, 1975, 24(2): 83-86. doi: 10.7498/aps.24.83
Metrics
  • Abstract views:  5397
  • PDF Downloads:  348
  • Cited By: 0
Publishing process
  • Received Date:  12 March 2018
  • Accepted Date:  26 May 2018
  • Published Online:  05 July 2018

/

返回文章
返回