Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical analysis of new optical microcavity

Gu Hong-Ming Huang Yong-Qing Wang Huan-Huan Wu Gang Duan Xiao-Feng Liu Kai Ren Xiao-Min

Citation:

Theoretical analysis of new optical microcavity

Gu Hong-Ming, Huang Yong-Qing, Wang Huan-Huan, Wu Gang, Duan Xiao-Feng, Liu Kai, Ren Xiao-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Optical microcavity can confine light into a small volume by resonant recirculation. Devices based on optical microcavities are already indispensable for a wide range of applications and studies. They not only apply to traditional optics, but also have broad application prospects in quantum information and integrated optoelectronic chips. In quantum optical devices, microcavity can cause atoms or quantum dots to emit spontaneous photons in a desired direction or can provide an environment where dissipative mechanisms such as spontaneous emission are overcome so that quantum entanglement of radiation and matter is possible. For better application in quantum communication, optical microcavity needs to have a high quality factor and a low mode volume. Considering the beam coupling, spot shape and experimental production and others, the Fabry-Perot (F-P) microcavity has been widely applied to the field of optoelectronics. However, the Q-factor of the F-P microcavity is generally low, and the mode volume is large, so it needs to be improved.In addition, high Q-factor microcavity can also play a large role in detecting particles and biological macromolecules.In this paper, through the theory of wave optics, the eigenmodes of a new type of cone-top cylindrical optical micro-cavity are analyzed, and the resonant wavelength expression of the resonant cavity is obtained. We discuss the effects of the top mirror angle on the resonator performance and application of COMSOL simulation software to verify the proposed cone-top cylindrical microcavity. The optimized design and simulation results show that the quality factor of the new resonator can be increased by 22.4% to 49928.5 and the effective mode volume of the resonator can be reduced by 47.8% compared with the traditional parallel resonator. In this case, the corresponding new cavity length is 4.51 μm and the diameter is 3.13 μm. In this article its fabrications are also discussed.
      Corresponding author: Huang Yong-Qing, yqhuang@bupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574019, 61674018, 61674020) and the Fund of State Key Laboratory of Information Photonics and Optical Communications, China (Grant No. IPOC2017ZZ01).
    [1]

    Zhang Y, Chen M X, Li Y Y, Yuan J 2015 Laser Optoelectron. Prog. 52 11 (in Chinese) [张莹, 陈梅雄, 李莹颖, 袁杰 2015 激光与光电子学进展 52 11]

    [2]

    Vahala K J 2003 Nature 424 839

    [3]

    Wang Q, Huang Y, Ren X 2001 Proceedings of SPIE–the International Society for Optical Engineering 4580 577

    [4]

    Liu K, Huang Y Q, Ren X M 2000 Appl. Opt. 39 423

    [5]

    Cao S, Xu X L 2014 Physics 43 740 (in Chinese) [曹硕, 许秀来 2014 物理 43 740]

    [6]

    Kim J, Benson O, Kan H, Yamamoto Y 1999 Nature 397 500

    [7]

    He Y M, He Y, Wei Y J, Wu D, Atatre M, Schneider C, Höfling S, Kamp M, Lu C Y, Pan J W 2013 Nat. Nanotech. 8 213

    [8]

    Löffler A, Reithmaier J P, Sek G, Hofmann C, Reitzenstein S, Kamp M, Forchel A 2005 Appl. Phys. Lett. 86 111105

    [9]

    Strauf S, Stoltz N G, Rakher M T, Coldren L A, Petroff P M, Bouwmeester D 2007 Nat. Photon. 1 704

    [10]

    Kryzhanovskaya N V, Maximov M V, Zhukov A, Nadtochiy A M, Moiseev E I, Shostak I I, Kulagina M M, Vashanova K A, Zadiranov Y M, Troshkov S I, Nevedomsky V V, Ruvimov S A, Lipovskii A A, Kalyuzhnyy N A, Mintairov S A 2015 J. Lightw. Technol. 33 171

    [11]

    Campenhout J V, Romeo P R, Thourhout D V, Seassal C, Regreny P, Cioccio L D, Fedeli J M, Baets R 2008 J. Lightw. Technol. 26 52

    [12]

    Ma X W, Huang Y Z, Long H, Yang Y D, Wang F L, Xiao J L, Du Y 2016 J. Lightw. Technol. 34 5263

    [13]

    Albert F, Hopfmann C, Eberspacher A, Amold F, Emmerling M, Schneider C, Höfling S, Forchel A, Kamp M, Wiersig J, Reitzenstein S 2012 Appl. Phys. Lett. 101 245

    [14]

    Ma C S, Liu S Y 2006 Optical Waveguide Mode Theory (Changchun: Jilin University Press) pp16-18 (in Chinese) [马春生, 刘式墉 2006 光波导模式理论(长春: 吉林大学出版社) 第16–18页]

    [15]

    Song H Z, Takemoto K, Miyazawa T, Takatsu M, Iwamoto S, Yamamoto T, Arakawa Y 2013 Opt. Lett. 38 3241

    [16]

    Li H H, Wang Q K 2009 Acta Sin. Quantum Opt. 15 380 (in Chinese) [黎慧华, 王庆康 2009 量子光学学报 15 380]

    [17]

    Macleod H A (translated by Xu D G) 2016 Thin-Film Optical Filters (Fourth Edition) (Beijing: Science Press) p32 (in Chinese) [安格斯·麦克劳德H. 著 (徐德纲 译) 2016 薄膜光学 (北京: 科学出版社)第32页]

    [18]

    Fang H L 2014 Optical Resonant Cavity and Gravitational Wave Detection (Beijing: Science Press) p17 (in Chinese) [方洪烈 2014 光学谐振腔与引力波探测(北京: 科学出版社) 第17 页]

    [19]

    Han J, Li J J, Deng J, Xing Y H, Yu X D, Lin W Z, Liu Y, Shen G D 2008 J. Optoelectronics Laser 19 456 (in Chinese) [韩军, 李建军, 邓军, 邢艳辉, 于晓东, 林委之, 刘莹, 沈光地 2008 光电子·激光 19 456]

    [20]

    Wang Q, Huang H, Wang X Y, Ren A G, Wu P, Huang C, Huang Y Q, Ren X M 2005 Chin. J. Lasers 32 1045 (in Chinese) [王琦, 黄辉, 王兴妍, 任爱光, 武鹏, 黄成, 黄永清, 任晓敏 2005 中国激光 32 1045]

    [21]

    Huang H, Huang Y, Ren X 2003 Electron. Lett. 39 113

  • [1]

    Zhang Y, Chen M X, Li Y Y, Yuan J 2015 Laser Optoelectron. Prog. 52 11 (in Chinese) [张莹, 陈梅雄, 李莹颖, 袁杰 2015 激光与光电子学进展 52 11]

    [2]

    Vahala K J 2003 Nature 424 839

    [3]

    Wang Q, Huang Y, Ren X 2001 Proceedings of SPIE–the International Society for Optical Engineering 4580 577

    [4]

    Liu K, Huang Y Q, Ren X M 2000 Appl. Opt. 39 423

    [5]

    Cao S, Xu X L 2014 Physics 43 740 (in Chinese) [曹硕, 许秀来 2014 物理 43 740]

    [6]

    Kim J, Benson O, Kan H, Yamamoto Y 1999 Nature 397 500

    [7]

    He Y M, He Y, Wei Y J, Wu D, Atatre M, Schneider C, Höfling S, Kamp M, Lu C Y, Pan J W 2013 Nat. Nanotech. 8 213

    [8]

    Löffler A, Reithmaier J P, Sek G, Hofmann C, Reitzenstein S, Kamp M, Forchel A 2005 Appl. Phys. Lett. 86 111105

    [9]

    Strauf S, Stoltz N G, Rakher M T, Coldren L A, Petroff P M, Bouwmeester D 2007 Nat. Photon. 1 704

    [10]

    Kryzhanovskaya N V, Maximov M V, Zhukov A, Nadtochiy A M, Moiseev E I, Shostak I I, Kulagina M M, Vashanova K A, Zadiranov Y M, Troshkov S I, Nevedomsky V V, Ruvimov S A, Lipovskii A A, Kalyuzhnyy N A, Mintairov S A 2015 J. Lightw. Technol. 33 171

    [11]

    Campenhout J V, Romeo P R, Thourhout D V, Seassal C, Regreny P, Cioccio L D, Fedeli J M, Baets R 2008 J. Lightw. Technol. 26 52

    [12]

    Ma X W, Huang Y Z, Long H, Yang Y D, Wang F L, Xiao J L, Du Y 2016 J. Lightw. Technol. 34 5263

    [13]

    Albert F, Hopfmann C, Eberspacher A, Amold F, Emmerling M, Schneider C, Höfling S, Forchel A, Kamp M, Wiersig J, Reitzenstein S 2012 Appl. Phys. Lett. 101 245

    [14]

    Ma C S, Liu S Y 2006 Optical Waveguide Mode Theory (Changchun: Jilin University Press) pp16-18 (in Chinese) [马春生, 刘式墉 2006 光波导模式理论(长春: 吉林大学出版社) 第16–18页]

    [15]

    Song H Z, Takemoto K, Miyazawa T, Takatsu M, Iwamoto S, Yamamoto T, Arakawa Y 2013 Opt. Lett. 38 3241

    [16]

    Li H H, Wang Q K 2009 Acta Sin. Quantum Opt. 15 380 (in Chinese) [黎慧华, 王庆康 2009 量子光学学报 15 380]

    [17]

    Macleod H A (translated by Xu D G) 2016 Thin-Film Optical Filters (Fourth Edition) (Beijing: Science Press) p32 (in Chinese) [安格斯·麦克劳德H. 著 (徐德纲 译) 2016 薄膜光学 (北京: 科学出版社)第32页]

    [18]

    Fang H L 2014 Optical Resonant Cavity and Gravitational Wave Detection (Beijing: Science Press) p17 (in Chinese) [方洪烈 2014 光学谐振腔与引力波探测(北京: 科学出版社) 第17 页]

    [19]

    Han J, Li J J, Deng J, Xing Y H, Yu X D, Lin W Z, Liu Y, Shen G D 2008 J. Optoelectronics Laser 19 456 (in Chinese) [韩军, 李建军, 邓军, 邢艳辉, 于晓东, 林委之, 刘莹, 沈光地 2008 光电子·激光 19 456]

    [20]

    Wang Q, Huang H, Wang X Y, Ren A G, Wu P, Huang C, Huang Y Q, Ren X M 2005 Chin. J. Lasers 32 1045 (in Chinese) [王琦, 黄辉, 王兴妍, 任爱光, 武鹏, 黄成, 黄永清, 任晓敏 2005 中国激光 32 1045]

    [21]

    Huang H, Huang Y, Ren X 2003 Electron. Lett. 39 113

  • [1] Li Yu-Qing, Wang Hong-Guang, Zhai Yong-Gui, Yang Wen-Jin, Wang Yue, Li Yun, Li Yong-Dong. Influence of quality factor on operating mode of TM02 mode relativistic backwave oscillator. Acta Physica Sinica, 2024, 73(3): 035202. doi: 10.7498/aps.73.20231577
    [2] Guo Zhuang, Ouyang Feng, Lu Zhi-Zhou, Wang Meng-Yu, Tan Qing-Gui, Xie Cheng-Feng, Wei Bin, He Xing-Dao. Analysis and optimization of optical frequency comb spectra of magnesium fluoride microbottle resonator. Acta Physica Sinica, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [3] Jin Xing, Xiao Shen-Yu, Gong Qi-Huang, Yang Qi-Fan. Generation, development, and application of microcombs. Acta Physica Sinica, 2023, 72(23): 234203. doi: 10.7498/aps.72.20231816
    [4] Xu Fan, Zhao Yan, Wu Yu-Hang, Wang Wen-Chi, Jin Xue-Ying. Stability and non-linear dynamic analysis of Kerr optical frequencycombs in dual-coupled microcavities with high-order dispersion. Acta Physica Sinica, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [5] Cai Cheng-Xin, Chen Shao-Geng, Wang Xue-Mei, Liang Jun-Yan, Wang Zhao-Hong. Phononic band structure and figure of merit of three-dimensional anisotropic asymmetric double-cone pentamode metamaterials. Acta Physica Sinica, 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [6] Meng Ling-Jun, Wang Meng-Yu, Shen Yuan, Yang Yu, Xu Wen-Bin, Zhang Lei, Wang Ke-Yi. Triple-layer-coated microspheres for refractive index sensor with internally referenced self-compensated thermal effect. Acta Physica Sinica, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [7] Xu Xin, Jin Xue-Ying, Hu Xiao-Hong, Huang Xin-Ning. Spatiotemporal evolution and spectral character of second harmonic generation in optical microresonator. Acta Physica Sinica, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [8] Xu Xin, Jin Xue-Ying, Gao Hao-Ran, Cheng Jie, Lu Yang, Chen Dong, Yu Lian-Dong. Analysis of frequency tuning process of dual coupled optical microcavities. Acta Physica Sinica, 2020, 69(18): 184207. doi: 10.7498/aps.69.20200530
    [9] Wang Meng-Yu, Meng Ling-Jun, Yang Yu, Zhong Hui-Kai, Wu Tao, Liu Bin, Zhang Lei, Fu Yan-Jun, Wang Ke-Yi. Selection of whispering-gallery modes and Fano resonance of prolate microbottle resonators. Acta Physica Sinica, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [10] Zhao Ze-Yu, Liu Jin-Qiao, Li Ai-Wu, Niu Li-Gang, Xu Ying. Theoretical study of microcavity-antireflection resonance hybrid modes enhanced absorption of organic solar cells. Acta Physica Sinica, 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [11] Wang Yan-Na, Zhao Di, Fang Ai-Ping, Jiang Chen-Wei, Gao Shao-Yan, Li Fu-Li. Precision measurement of single-atom trajectories in higher-order Laguerre-Gaussian transverse modes of a Fabry-Perot cavity. Acta Physica Sinica, 2015, 64(22): 224214. doi: 10.7498/aps.64.224214
    [12] Liu Xiang-Yuan, Qian Xian-Mei, Zhang Sui-Meng, Cui Chao-Long. Numerical calculation and discussion on the return photon number of sodium laser beacon excited by a macro-micro pulse laser. Acta Physica Sinica, 2015, 64(9): 094206. doi: 10.7498/aps.64.094206
    [13] Zhang Tian-Le, Huang Xi, Zheng Kai, Zhang Xin-Wu, Wang Yu-Jie, Wu Li-Ming, Zhang Xiao-Qing, Zheng Jie, Zhu Biao. Influence of polarization voltage on piezoelectric performance of polypropylene piezoelectret films. Acta Physica Sinica, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [14] Li Wen-Fang, Du Jin-Jin, Wen Rui-Juan, Yang Peng-Fei, Li Gang, Zhang Tian-Cai. Single-atom transfer in a strongly coupled cavity quantum electrodynamics: experiment and Monte Carlo simulation. Acta Physica Sinica, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [15] Qiu Kang-Sheng, Zhao Yan-Hui, Liu Xiang-Bo, Feng Bao-Hua, Xu Xiu-Lai. Whispering gallery modes in a bent ZnO microwire. Acta Physica Sinica, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [16] Du Jin-Jin, Li Wen-Fang, Wen Rui-Juan, Li Gang, Zhang Tian-Cai. Precision measurement of resonate frequency and the effective cavity length of the high finesse optical micro-cavity. Acta Physica Sinica, 2013, 62(19): 194203. doi: 10.7498/aps.62.194203
    [17] Song Gu-Zhou, Ma Ji-Ming, Wang Kui-Lu, Zhou Ming. Analysis of figure of merit for thick pinhole imaging. Acta Physica Sinica, 2012, 61(10): 102902. doi: 10.7498/aps.61.102902
    [18] Ding Yan-Hong, Li Ming-Ji, Yang Bao-He, Ma Xu. AC magnetic properties of Fe15.38Co61.52Cu0.6Nb2.5Si11B9nanocrystalline soft magnetic alloy. Acta Physica Sinica, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [19] Cheng Zheng-Fu, Long Xiao-Xia, Zheng Rui-Lun. Influence of temperature on the Bose condensation of photons and excitons in optic microcavity. Acta Physica Sinica, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [20] Liu Tao, Zhang Tian-Cai, Wang Jun-Min, Peng Kun-Chi. Optical dipole trap in a high-finesse micro-cavity. Acta Physica Sinica, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
Metrics
  • Abstract views:  6851
  • PDF Downloads:  243
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2018
  • Accepted Date:  21 March 2018
  • Published Online:  20 July 2019

/

返回文章
返回