Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rapid dendrite growth mechanism and solute distribution in liquid ternary Fe-Cr-Ni alloys

Li Lu-Yuan Ruan Ying Wei Bing-Bo

Citation:

Rapid dendrite growth mechanism and solute distribution in liquid ternary Fe-Cr-Ni alloys

Li Lu-Yuan, Ruan Ying, Wei Bing-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Stainless steels with excellent hardness and corrosion resistance performance have been widely used in industrial production. Ternary Fe-Cr-Ni alloys, as a model alloy of nickel chromium stainless steels, are of great importance in the fields of material science. Under non-equilibrium solidification condition, alloys may have new microstructure and improved performance. In this paper, two liquid ternary Fe-Cr-Ni alloys are deeply undercooled and rapidly solidified in a 3-m drop tube to investigate the microstructure evolution and solute distribution of alloy droplets with different sizes. In the drop tube experiments, the Fe-Cr-Ni alloy samples with a mass of 1.5 g are placed in a φ16 m mm×150 mm quartz tube with a 0.5-mm-diameter orifice at its bottom and heated by induction heating device in a high vacuum chamber. Then the samples are melted and overheated to 200 K above their liquidus temperatures for several seconds. The alloy melt is ejected out of the small orifice and dispersed into numerous droplets after adding high pressure helium gas flow. The alloy droplets with diameters ranging from 68 μm to 1124 μm are achieved. After experiments, the alloy droplets with different sizes are mounted respectively. Then they are polished and etched. The drop tube technique provides an efficient way to study the rapid solidification mechanism of alloys. Besides the experiments, the dendrite growth velocities of primary phase in two Fe-Cr-Ni alloys are calculated theoretically using the modified LKT/BCT model. As droplet size decreases, both cooling rate and undercooling increase exponentially and the morphologies of two alloys become well refined. Under the near-equilibrium solidification condition with a cooling rate of 10 K/min, both alloys consist of coarse lath-like α phase. After rapid solidification of Fe81.4Cr13.9Ni4.7 alloy droplets during free fall, the microstructure presents a lath-like α phase, resulting from the solid-solid phase transition. As undercooling increases, the primary δ phase is converted from the coarse dendrite with long trunk into equiaxed grain. For Fe81.4Cr4.7Ni13.9 alloy, the microstructure is composed of α phase grains. The transition of primary γ phase from coarse dendrite with long trunk to refined equiaxed grain occurs as the undercooling increases. Meanwhile, both dendrite trunk length and secondary dendrite arm spacing decrease drastically, suggesting that the rapid solidification is the main reason for grain refinement. Moreover, the relative segregation degree of solute Cr and Ni inside α phase grain also decreases obviously with the increase of undercooling, and the microsegregation of Ni is more remarkable than that of Cr. This suggests that the high cooling rate and undercooling cause the solute to be distributed evenly. Compared with that of γ phase, the dendrite growth velocity of δ phase is large and its dendrite tip radius is small. The two phase transform from solute diffusion controlled growth into thermal diffusion controlled growth as undercooling increases to 8 K. When undercooling is larger than 8 K and within the experimental undercooling range, the dendrite growth of both Fe-Cr-Ni alloys is controlled by thermal diffusion.
      Corresponding author: Ruan Ying, ruany@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1660108, 51327901), the Research and Development Project of Shaanxi Industrial Science and Technology, China (Grant No. 2016GY-247), and the Fundamental Research Funds for the Central Universities, China (Grant No. 3102018jgc009).
    [1]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [2]

    Llamazares J L S, Sanchez T, Santos J D, Pérez M J, Sanchez M L, Hernando B, Escoda L, Suñol J J, Varga R 2008 Appl. Phys. Lett. 92 012513

    [3]

    Chen Q J, Shen J, Fan H B, Sun J F, Huang Y J, Mccartney D G 2005 Chin. Phys. Lett. 22 1736

    [4]

    Lavernia E J, Srivatsan T S 2010 J. Mater. Sci. 45 287

    [5]

    Ruan Y, Mohajerani A, Dao M 2016 Sci. Rep. 6 31684

    [6]

    Quirinale D G, Rustan G E, Kreyssig A, Goldman A I 2015 Appl. Phys. Lett. 106 241906

    [7]

    Niyomsoan S, Gargarella P, Stoica M, Khoshkoo M S, Khn U, Eckert J 2013 J. Appl. Phys. 113 104308

    [8]

    Chan W L, Averback R S, Cahill D G, Ashkenazy Y 2009 Phys. Rev. Lett. 102 095701

    [9]

    Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson D S, Goldman A I, Kelton K F 2008 Phys. Rev. B 77 184102

    [10]

    Zhou J K, Li J G 2008 Appl. Phys. Lett. 92 141915

    [11]

    Santos J D, Sanchez T, Alvarez P, Sanchez M L, Llamazares J L S, Hernando B, Escoda L, Suñol J J, Varga R 2008 J. Appl. Phys. 103 07B326

    [12]

    Zhao S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1917

    [13]

    Ruan Y 2013 Phys. Status Solidi B 250 73

    [14]

    Lu X Y, Liao S, Ruan Y, Dai F P 2012 Acta Phys. Sin. 61 216102 (in Chinese) [鲁晓宇, 廖霜, 阮莹, 代富平 2012 物理学报 61 216102]

    [15]

    Fransaer J, Wagner A V, Spaepen F 2000 J. Appl. Phys. 87 1801

    [16]

    Ruan Y, Wang X J 2015 Phys. Status Solidi B 252 361

    [17]

    Chen K P, L P, Wang H P 2017 Acta Phys. Sin. 66 068101 (in Chinese) [陈克萍, 吕鹏, 王海鹏 2017 物理学报 66 068101]

    [18]

    Tournier S, Vinet B, Pasturel A, Ansara I, Desré P J 1998 Phys. Rev. B 57 3340

    [19]

    Wu Y H, Chang J, Wang W L, Wei B 2016 Appl. Phys. Lett. 109 154101

    [20]

    Hanlon A B, Matson D M, Hyers R W 2006 Phil. Mag. Lett. 86 165

    [21]

    Fu J W, Yang Y S, Guo J J, Tong W H 2008 Mater. Sci. Technol. 24 941

    [22]

    Fu J W, Yang Y S, Guo J J, Ma J C, Tong W H 2009 Mater. Sci. Technol. 25 1013

    [23]

    Fukumoto S, Okane T, Umeda T, Kurz W 2000 ISIJ Int. 40 677

    [24]

    Yang X Y, Peng X, Chen J, Wang F H 2007 Appl. Surf. Sci. 253 4420

    [25]

    Cronemberger M E R, Mariano N A, Coelho M F C, Pereira J N, Ramos é C T, Mendonça R D, Nakamatsu S, Maestrelli S C 2014 Mater. Sci. Forum 802 398

    [26]

    Effenberg G, Ilyenko S, Dovbenko O, MSIT 2008 Ternary Alloy Systems (Vol. 11) (Berlin: Springer-Verlag Berlin Heidelberg) pp218-249

    [27]

    Brooks J A, Thompson A W 1991 Int. Mater. Rev. 36 16

    [28]

    Tkatch V I, Denisenko S N, Beloshov O N 1997 Acta Mater. 45 2821

    [29]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [30]

    Löser W, Herlach D M 1992 Metall. Trans. A 23 1585

    [31]

    Bobadilla M, Lacaze J, Lesoult G 1988 J. Cryst. Growth 89 531

    [32]

    Chuang Y Y, Hsieh K C, Chang Y A 1986 Metall. Trans. A 17 1373

    [33]

    Gale W F, Totemeier T C 2004 Smithells Metals Reference Book (8th Ed.) (Amsterdam: Elsevier Butterworth-Heinemann publications) pp14-11

  • [1]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [2]

    Llamazares J L S, Sanchez T, Santos J D, Pérez M J, Sanchez M L, Hernando B, Escoda L, Suñol J J, Varga R 2008 Appl. Phys. Lett. 92 012513

    [3]

    Chen Q J, Shen J, Fan H B, Sun J F, Huang Y J, Mccartney D G 2005 Chin. Phys. Lett. 22 1736

    [4]

    Lavernia E J, Srivatsan T S 2010 J. Mater. Sci. 45 287

    [5]

    Ruan Y, Mohajerani A, Dao M 2016 Sci. Rep. 6 31684

    [6]

    Quirinale D G, Rustan G E, Kreyssig A, Goldman A I 2015 Appl. Phys. Lett. 106 241906

    [7]

    Niyomsoan S, Gargarella P, Stoica M, Khoshkoo M S, Khn U, Eckert J 2013 J. Appl. Phys. 113 104308

    [8]

    Chan W L, Averback R S, Cahill D G, Ashkenazy Y 2009 Phys. Rev. Lett. 102 095701

    [9]

    Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson D S, Goldman A I, Kelton K F 2008 Phys. Rev. B 77 184102

    [10]

    Zhou J K, Li J G 2008 Appl. Phys. Lett. 92 141915

    [11]

    Santos J D, Sanchez T, Alvarez P, Sanchez M L, Llamazares J L S, Hernando B, Escoda L, Suñol J J, Varga R 2008 J. Appl. Phys. 103 07B326

    [12]

    Zhao S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1917

    [13]

    Ruan Y 2013 Phys. Status Solidi B 250 73

    [14]

    Lu X Y, Liao S, Ruan Y, Dai F P 2012 Acta Phys. Sin. 61 216102 (in Chinese) [鲁晓宇, 廖霜, 阮莹, 代富平 2012 物理学报 61 216102]

    [15]

    Fransaer J, Wagner A V, Spaepen F 2000 J. Appl. Phys. 87 1801

    [16]

    Ruan Y, Wang X J 2015 Phys. Status Solidi B 252 361

    [17]

    Chen K P, L P, Wang H P 2017 Acta Phys. Sin. 66 068101 (in Chinese) [陈克萍, 吕鹏, 王海鹏 2017 物理学报 66 068101]

    [18]

    Tournier S, Vinet B, Pasturel A, Ansara I, Desré P J 1998 Phys. Rev. B 57 3340

    [19]

    Wu Y H, Chang J, Wang W L, Wei B 2016 Appl. Phys. Lett. 109 154101

    [20]

    Hanlon A B, Matson D M, Hyers R W 2006 Phil. Mag. Lett. 86 165

    [21]

    Fu J W, Yang Y S, Guo J J, Tong W H 2008 Mater. Sci. Technol. 24 941

    [22]

    Fu J W, Yang Y S, Guo J J, Ma J C, Tong W H 2009 Mater. Sci. Technol. 25 1013

    [23]

    Fukumoto S, Okane T, Umeda T, Kurz W 2000 ISIJ Int. 40 677

    [24]

    Yang X Y, Peng X, Chen J, Wang F H 2007 Appl. Surf. Sci. 253 4420

    [25]

    Cronemberger M E R, Mariano N A, Coelho M F C, Pereira J N, Ramos é C T, Mendonça R D, Nakamatsu S, Maestrelli S C 2014 Mater. Sci. Forum 802 398

    [26]

    Effenberg G, Ilyenko S, Dovbenko O, MSIT 2008 Ternary Alloy Systems (Vol. 11) (Berlin: Springer-Verlag Berlin Heidelberg) pp218-249

    [27]

    Brooks J A, Thompson A W 1991 Int. Mater. Rev. 36 16

    [28]

    Tkatch V I, Denisenko S N, Beloshov O N 1997 Acta Mater. 45 2821

    [29]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [30]

    Löser W, Herlach D M 1992 Metall. Trans. A 23 1585

    [31]

    Bobadilla M, Lacaze J, Lesoult G 1988 J. Cryst. Growth 89 531

    [32]

    Chuang Y Y, Hsieh K C, Chang Y A 1986 Metall. Trans. A 17 1373

    [33]

    Gale W F, Totemeier T C 2004 Smithells Metals Reference Book (8th Ed.) (Amsterdam: Elsevier Butterworth-Heinemann publications) pp14-11

  • [1] Xu Shan-Sen, Chang Jian, Wu Yu-Hao, Sha Sha, Wei Bing-Bo. Rapid solidification mechanism of liquid quinary Ni-Zr-Ti-Al-Cu alloy investigated by high-speed cinematography. Acta Physica Sinica, 2019, 68(19): 196401. doi: 10.7498/aps.68.20190910
    [2] Chu Shuo, Guo Chun-Wen, Wang Zhi-Jun, Li Jun-Jie, Wang Jin-Cheng. Effect of concentration-dependent diffusion coefficient on dendrite growth in directional solidification. Acta Physica Sinica, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [3] Sha Sha, Wang Wei-Li, Wu Yu-Hao, Wei Bing-Bo. Dendrite growth and Vickers microhardness of Co7Mo6 intermetallic compound under large undercooling condition. Acta Physica Sinica, 2018, 67(4): 046402. doi: 10.7498/aps.67.20172156
    [4] Zhu Hai-Zhe, Ruan Ying, Gu Qian-Qian, Yan Na, Dai Fu-Ping. Rapid solidification mechanism and magnetic properties of Ni-Fe-Ti alloy prepared in drop tube. Acta Physica Sinica, 2017, 66(13): 138101. doi: 10.7498/aps.66.138101
    [5] Wei Shao-Lou, Huang Lu-Jun, Chang Jian, Yang Shang-Jing, Geng Lin. Substantial undercooling and rapid dendrite growth of liquid Ti-Al alloy. Acta Physica Sinica, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [6] Duan Pei-Pei, Xing Hui, Chen Zhi, Hao Guan-Hua, Wang Bi-Han, Jin Ke-Xin. Phase-field modeling of free dendritic growth of magnesium based alloy. Acta Physica Sinica, 2015, 64(6): 060201. doi: 10.7498/aps.64.060201
    [7] Wang Xiao-Juan, Ruan Ying, Hong Zhen-Yu. Thermophysical properties and rapid solidification of Al-Cu-Ge alloys. Acta Physica Sinica, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [8] Wei Lei, Lin Xin, Wang Meng, Huang Wei-Dong. Cellular automaton model with MeshTV interface reconstruction technique for alloy dendrite growth. Acta Physica Sinica, 2012, 61(9): 098104. doi: 10.7498/aps.61.098104
    [9] Lu Xiao-Yu, Liao Shuang, Ruan Ying, Dai Fu-Ping. Phase constitution and microstructure evolution of rapidly solidified Ti-Cu-Fe alloy. Acta Physica Sinica, 2012, 61(21): 216102. doi: 10.7498/aps.61.216102
    [10] Li Zhi-Qiang, Wang Wei-Li, Zhai Wei, Wei Bing-Bo. Formation mechanism of layered microstructure and monotectic cell within rapidly solidified Fe62.1Sn27.9Si10 alloy. Acta Physica Sinica, 2011, 60(10): 108101. doi: 10.7498/aps.60.108101
    [11] Yan Na, Wang Wei-Li, Dai Fu-Ping, Wei Bing-Bo. Microstructure formation mechanism of rapidly solidified ternary Co-Cu-Pb monotectic alloys. Acta Physica Sinica, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [12] Wang Ming-Guang, Zhao Yu-Hong, Ren Juan-Na, Mu Yan-Qing, Wang Wei, Yang Wei-Ming, Li Ai-Hong, Ge Hong-Hao, Hou Hua. Phase-field simulation of Non-Isothermal dendritic growth of NiCu alloy. Acta Physica Sinica, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [13] Xu Jin-Feng, Fan Yu-Fang, Chen Wei, Zhai Qiu-Ya. Characterization of rapidly solidified Cu-Pb hypermonotectic alloys. Acta Physica Sinica, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [14] Long Wen-Yuan, Lü Dong-Lan, Xia Chun, Pan Mei-Man, Cai Qi-Zhou, Chen Li-Liang. Phase-field simulation of non-isothermal solidification dendrite growth of binary alloy under the force flow. Acta Physica Sinica, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [15] Yin Han-Yu, Lu Xiao-Yu. Rapid solidification of undercooled Cu60Sn30Pb10 monotectic alloy. Acta Physica Sinica, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [16] Mei Ce-Xiang, Ruan Ying, Dai Fu-Ping, Wei Bing-Bo. Phase constitution and solidification characteristics of undercooled Ag-Cu-Ge ternary eutectic alloy. Acta Physica Sinica, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [17] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [18] Zang Du-Yang, Wang Hai-Peng, Wei Bing-Bo. Rapid dendritic growth in highly undercooled ternary Ni-Cu-Co alloy. Acta Physica Sinica, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [19] Long Wen-Yuan, Cai Qi-Zhou, Wei Bo-Kang, Chen Li-Liang. Simulation of dendritic growth of multicomponent alloys using phase-field method. Acta Physica Sinica, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [20] Xu Jin-Feng, Wei Bing-Bo. Electrical property of rapidly solidified Co-Cu peritectic alloys. Acta Physica Sinica, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
Metrics
  • Abstract views:  5171
  • PDF Downloads:  179
  • Cited By: 0
Publishing process
  • Received Date:  09 January 2018
  • Accepted Date:  08 May 2018
  • Published Online:  20 July 2019

/

返回文章
返回