Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Total ionizing dose effect of ferroelectric random access memory under Co-60 gamma rays and electrons

Qin Li Guo Hong-Xia Zhang Feng-Qi Sheng Jiang-Kun Ouyang Xiao-Ping Zhong Xiang-Li Ding Li-Li Luo Yin-Hong Zhang Yang Ju An-An

Citation:

Total ionizing dose effect of ferroelectric random access memory under Co-60 gamma rays and electrons

Qin Li, Guo Hong-Xia, Zhang Feng-Qi, Sheng Jiang-Kun, Ouyang Xiao-Ping, Zhong Xiang-Li, Ding Li-Li, Luo Yin-Hong, Zhang Yang, Ju An-An
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ferroelectric random access memory (FeRAM) has superior features such as low power consumption, short write access time, low voltage, high tolerance to radiation. Data about the total ionizing dose (TID) radiation effects of FeRAM have not been rich in the literature so far. Experimental study of the ionizing radiation effect of FeRAM is carried out based on Co-60 γ rays and 2 MeV electrons. And the TID radiation damages to the FeRAM in the dynamic biased, static biased and unbiased case are studied. The direct current and alternating current parameters are tested by J-750. The test results indicate that the stored information about the memory cell has no change before failure, the ferroelectric capacitors are still able to hold the data. Accordingly, the TID failure of the FeRAM should be mainly ascribed to the poor TID hardness of the peripheral complementary metal oxide semiconductor circuits. Besides, three types of electric fields from three working conditions can result in different generation and recombination rates of electronhole pairs. For static biased case, the internal electric field in the FeRAM is constant. It can lead to high net production of the electronhole pairs and a great number of trapped charges. Hence the radiation damage in the static biased case is most serious. With the increase of the total radiation dose, the electrical parameters of FeRAM have different degradations. Part of the parameters that can be detected by J-750, may lapse before they are detected online. Standby current, operating power supply current, leakage current and output low voltage are radiationsensitive parameters of FeRAM through analyzing the test data. And, other parameters, which have slight changes, have small effect on the degradation of the device. Furthermore, the electron accelerator is used in electron irradiation experiment. By comparing the results of the two kinds of radiation tests, it is discovered that the electrons tend to cause lighter TID degradation than Co-60 γ rays because of the high density of electrons in the electron irradiation environment and low net production rate of electronhole pairs. In addition, the electrons have weaker penetration than Co-60 γ rays due to low energy. The device packaging, the upper metal layers can also influence the experimental result of electron irradiation. The above conclusions provide a reference value for the total dose effect of FeRAM and will be of great significance for studying the radiation hardening of FeRAM.
      Corresponding author: Guo Hong-Xia, guohxnint@126.com
    [1]

    Rana S, Todd C M, Fat D H 2011 Ferroelectrics 413 170

    [2]

    Cong Z C, Yu X F, Cui J W, Zheng Q W, Guo Q, Sun J, Wang B, Ma W Y, Ma L Y, Zhou H 2014 Acta Phys. Sin. 63 086101 (in Chinese) [丛忠超, 余学峰, 崔江维, 郑齐文, 郭旗, 孙静, 汪波, 马武英, 玛丽娅, 周航 2014 物理学报 63 086101]

    [3]

    Scott J F 2007 Science 315 954

    [4]

    Sheikholeslami A, Gulak P G 2000 Proc. IEEE 88 667

    [5]

    Zhou Y C, Tang M H 2009 Mater. Rev. 23 1 (in Chinese) [周益春, 唐明华 2009 材料导报 23 1]

    [6]

    Zhai Y H, Li W, Li P, Hu B, Huo W R, Li J H, Gu K 2012 Mater. Rev. 26 34 (in Chinese) [翟亚红, 李威, 李平, 胡滨, 霍伟荣, 李俊宏, 辜科 2012 材料导报 26 34]

    [7]

    Benedetto J M, Moore R A, Mclean F B, Brody P S 1990 IEEE Trans. Nucl. Sci. 37 1713

    [8]

    Gu K, Liu J J, Li W, Liu Y, Li P 2015 Microelectron. Reliab. 55 873

    [9]

    Schwank J R, Nasby R D, Miller S L, Rodgers M S, Dressendorfer P V 1990 IEEE Trans. Nucl. Sci. 37 1703

    [10]

    Shen J Y, Li W, Zhang Y B 2017 IEEE Trans. Nucl. Sci. 64 969

    [11]

    Lou L F, Yang Y T, Cai C C, Gao F, Tang C L 2007 High Power Laser and Particle Beams 19 2091 (in Chinese) [娄利飞, 杨银堂, 柴常春, 高峰, 唐重林 2007 强激光与粒子束 19 2091]

    [12]

    Zhang X Y, Guo Q, Lu W, Zhang X F, Zheng Q W, Cui J W, Li Y D, Zhou D 2013 Acta Phys. Sin. 62 156107 (in Chinese) [张兴尧, 郭旗, 陆妩, 张孝富, 郑齐文, 崔江维, 李豫东, 周东 2013 物理学报 62 156107]

    [13]

    Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P, Cavrois V F 2008 IEEE Trans. Nucl. Sci. 55 1833

    [14]

    Li M S, Yu X F, Ren D Y, Guo Q, Li Y D, Gao B, Cui J W, Lan B, Fei W X, Chen R, Zhao Y 2011 Microelectronics 41 128 (in Chinese) [李茂顺, 余学峰, 任迪远, 郭旗, 李豫东, 高博, 崔江维, 兰博, 费武雄, 陈睿, 赵云 2011 微电子学 41 128]

    [15]

    Scott J F (translated by Zhu J S) 2004 Ferroelectric Memory (Beijing: Tsinghua University Press) pp74-78 (in Chinese) [斯科特 著 (朱劲松 译) 2004 铁电存储器(北京:清华大学出版社) 第74–78页]

    [16]

    Gao B, Yu X F, Ren D Y, Li Y D, Cui J W, Li M S, Li M, Wang Y Y 2011 Acta Phys. Sin. 60 068702 (in Chinese) [高博, 余学峰, 任迪远, 李豫东, 崔江维, 李茂顺, 李明, 王义元 2011 物理学报 60 068702]

    [17]

    Li M, Yu X F, Xu F Y, Li M S, Gao B, Cui J W, Zhou D, Xi S B, Wang F 2012 Atomic Energy Sci. Technol. 46 507 (in Chinese) [李明, 余学峰, 许发月, 李茂顺, 高博, 崔江维, 周东, 席善斌, 王飞 2012 原子能科学技术 46 507]

    [18]

    Li M, Yu X F, Xue Y G, Lu J, Cui J W, Gao B 2012 Acta Phys. Sin. 61 106103 (in Chinese) [李明, 余学峰, 薛耀国, 卢健, 崔江维, 高博 2012 物理学报 61 106103]

    [19]

    Paillet P, Schwank J, Shaneyfelt M R, Carvrois V F, Jones R L, Flament O 2002 IEEE Trans. Nucl. Sci. 49 2656

    [20]

    He B P, Yao Z B, Zhang F Q 2009 Chin. Phys. C 33 436

    [21]

    He B P, Chen W, Wang G Z 2006 Acta Phys. Sin. 55 3546 (in Chinese) [何宝平, 陈伟, 王桂珍 2006 物理学报 55 3546

  • [1]

    Rana S, Todd C M, Fat D H 2011 Ferroelectrics 413 170

    [2]

    Cong Z C, Yu X F, Cui J W, Zheng Q W, Guo Q, Sun J, Wang B, Ma W Y, Ma L Y, Zhou H 2014 Acta Phys. Sin. 63 086101 (in Chinese) [丛忠超, 余学峰, 崔江维, 郑齐文, 郭旗, 孙静, 汪波, 马武英, 玛丽娅, 周航 2014 物理学报 63 086101]

    [3]

    Scott J F 2007 Science 315 954

    [4]

    Sheikholeslami A, Gulak P G 2000 Proc. IEEE 88 667

    [5]

    Zhou Y C, Tang M H 2009 Mater. Rev. 23 1 (in Chinese) [周益春, 唐明华 2009 材料导报 23 1]

    [6]

    Zhai Y H, Li W, Li P, Hu B, Huo W R, Li J H, Gu K 2012 Mater. Rev. 26 34 (in Chinese) [翟亚红, 李威, 李平, 胡滨, 霍伟荣, 李俊宏, 辜科 2012 材料导报 26 34]

    [7]

    Benedetto J M, Moore R A, Mclean F B, Brody P S 1990 IEEE Trans. Nucl. Sci. 37 1713

    [8]

    Gu K, Liu J J, Li W, Liu Y, Li P 2015 Microelectron. Reliab. 55 873

    [9]

    Schwank J R, Nasby R D, Miller S L, Rodgers M S, Dressendorfer P V 1990 IEEE Trans. Nucl. Sci. 37 1703

    [10]

    Shen J Y, Li W, Zhang Y B 2017 IEEE Trans. Nucl. Sci. 64 969

    [11]

    Lou L F, Yang Y T, Cai C C, Gao F, Tang C L 2007 High Power Laser and Particle Beams 19 2091 (in Chinese) [娄利飞, 杨银堂, 柴常春, 高峰, 唐重林 2007 强激光与粒子束 19 2091]

    [12]

    Zhang X Y, Guo Q, Lu W, Zhang X F, Zheng Q W, Cui J W, Li Y D, Zhou D 2013 Acta Phys. Sin. 62 156107 (in Chinese) [张兴尧, 郭旗, 陆妩, 张孝富, 郑齐文, 崔江维, 李豫东, 周东 2013 物理学报 62 156107]

    [13]

    Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P, Cavrois V F 2008 IEEE Trans. Nucl. Sci. 55 1833

    [14]

    Li M S, Yu X F, Ren D Y, Guo Q, Li Y D, Gao B, Cui J W, Lan B, Fei W X, Chen R, Zhao Y 2011 Microelectronics 41 128 (in Chinese) [李茂顺, 余学峰, 任迪远, 郭旗, 李豫东, 高博, 崔江维, 兰博, 费武雄, 陈睿, 赵云 2011 微电子学 41 128]

    [15]

    Scott J F (translated by Zhu J S) 2004 Ferroelectric Memory (Beijing: Tsinghua University Press) pp74-78 (in Chinese) [斯科特 著 (朱劲松 译) 2004 铁电存储器(北京:清华大学出版社) 第74–78页]

    [16]

    Gao B, Yu X F, Ren D Y, Li Y D, Cui J W, Li M S, Li M, Wang Y Y 2011 Acta Phys. Sin. 60 068702 (in Chinese) [高博, 余学峰, 任迪远, 李豫东, 崔江维, 李茂顺, 李明, 王义元 2011 物理学报 60 068702]

    [17]

    Li M, Yu X F, Xu F Y, Li M S, Gao B, Cui J W, Zhou D, Xi S B, Wang F 2012 Atomic Energy Sci. Technol. 46 507 (in Chinese) [李明, 余学峰, 许发月, 李茂顺, 高博, 崔江维, 周东, 席善斌, 王飞 2012 原子能科学技术 46 507]

    [18]

    Li M, Yu X F, Xue Y G, Lu J, Cui J W, Gao B 2012 Acta Phys. Sin. 61 106103 (in Chinese) [李明, 余学峰, 薛耀国, 卢健, 崔江维, 高博 2012 物理学报 61 106103]

    [19]

    Paillet P, Schwank J, Shaneyfelt M R, Carvrois V F, Jones R L, Flament O 2002 IEEE Trans. Nucl. Sci. 49 2656

    [20]

    He B P, Yao Z B, Zhang F Q 2009 Chin. Phys. C 33 436

    [21]

    He B P, Chen W, Wang G Z 2006 Acta Phys. Sin. 55 3546 (in Chinese) [何宝平, 陈伟, 王桂珍 2006 物理学报 55 3546

  • [1] Li Ji-Fang, Guo Hong-Xia, Ma Wu-Ying, Song Hong-Jia, Zhong Xiang-Li, Li Yang-Fan, Bai Ru-Xue, Lu Xiao-Jie, Zhang Feng-Qi. Total X-ray dose effect on graphene field effect transistor. Acta Physica Sinica, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [2] Yuan Guo-Liang, Wang Chen-Hao, Tang Wen-Bin, Zhang Rui, Lu Xu-Bing. Structure, performance regulation and typical device applications of HfO2-based ferroelectric films. Acta Physica Sinica, 2023, 72(9): 097703. doi: 10.7498/aps.72.20222221
    [3] Zhang Jin-Xin, Wang Xin, Guo Hong-Xia, Feng Juan, Lü Ling, Li Pei, Yan Yun-Yi, Wu Xian-Xiang, Wang Hui. Three-dimensional simulation of total ionizing dose effect on SiGe heterojunction bipolor transistor. Acta Physica Sinica, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [4] 3D Simulation Study on the Mechanism of Influence Factor of Total Dose Ionizing Effect on SiGe HBT. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211795
    [5] Li Shun, Song Yu, Zhou Hang, Dai Gang, Zhang Jian. Statistical characteristics of total ionizing dose effects of bipolar transistors. Acta Physica Sinica, 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [6] Chen Rui, Liang Ya-Nan, Han Jian-Wei, Wang Xuan, Yang Han, Chen Qian, Yuan Run-Jie, Ma Ying-Qi, Shangguan Shi-Peng. Single event effect and total dose effect of GaN high electron mobility transistor using heavy ions and gamma rays. Acta Physica Sinica, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [7] Ju An-An,  Guo Hong-Xia,  Zhang Feng-Qi,  Guo Wei-Xin,  Ouyang Xiao-Ping,  Wei Jia-Nan,  Luo Yin-Hong,  Zhong Xiang-Li,  Li Bo,  Qin Li. Experimental study about single event functional interrupt of ferroelectric random access memory induced by 30-90 MeV proton. Acta Physica Sinica, 2018, 67(23): 237803. doi: 10.7498/aps.67.20181225
    [8] Wang Xin, Lu Wu, Wu Xue, Ma Wu-Ying, Cui Jiang-Wei, Liu Mo-Han, Jiang Ke. Radiation effect of deep-submicron metal-oxide-semiconductor field-effect transistor and parasitic transistor. Acta Physica Sinica, 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [9] Zhang Xing-Yao, Guo Qi, Lu Wu, Zhang Xiao-Fu, Zheng Qi-Wen, Cui Jiang-Wei, Li Yu-Dong, Zhou Dong. Serial ferroelectric memory ionizing radiation effects and annealing characteristics. Acta Physica Sinica, 2013, 62(15): 156107. doi: 10.7498/aps.62.156107
    [10] Hu Zhi-Yuan, Liu Zhang-Li, Shao Hua, Zhang Zheng-Xuan, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. The influence of channel length on total ionizing dose effect in deep submicron technologies. Acta Physica Sinica, 2012, 61(5): 050702. doi: 10.7498/aps.61.050702
    [11] Shang Huai-Chao, Liu Hong-Xia, Zhuo Qing-Qing. Degradation mechanism of SOI NMOS devices exposed to 60Co γ-ray at low dose rate. Acta Physica Sinica, 2012, 61(24): 246101. doi: 10.7498/aps.61.246101
    [12] Li Ming, Yu Xue-Feng, Xue Yao-Guo, Lu Jian, Cui Jiang-Wei, Gao Bo. Research on the total dose irradiation effect of partial-depletion-silicon-on insulator static random access memory. Acta Physica Sinica, 2012, 61(10): 106103. doi: 10.7498/aps.61.106103
    [13] Liu Zhang-Li, Hu Zhi-Yuan, Zhang Zheng-Xuan, Shao Hua, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. Total ionizing dose effect of 0.18 m nMOSFETs. Acta Physica Sinica, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [14] Lan Bo, Gao Bo, Cui Jiang-Wei, Li Ming, Wang Yi-Yuan, Yu Xue-Feng, Ren Di-Yuan. Theorical model of enhanced low dose rate sensitivity observed in p-type metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
    [15] Wang Yi-Yuan, Lu Wu, Ren Di-Yuan, Guo Qi, Yu Xue-Feng, He Cheng-Fa, Gao Bo. Degradation and dose rate effects of bipolar linearregulator on ionizing radiation. Acta Physica Sinica, 2011, 60(9): 096104. doi: 10.7498/aps.60.096104
    [16] Zhang Tao. A cause of energy exchange between light and electron. Acta Physica Sinica, 2009, 58(1): 234-237. doi: 10.7498/aps.58.234
    [17] Yang Li-Xia, Du Lei, Bao Jun-Lin, Zhuang Yi-Qi, Chen Xiao-Dong, Li Qun-Wei, Zhang Ying, Zhao Zhi-Gang, He Liang. The effect of 60Co γ-ray irradiation on the 1/f noise of Schottky barrier diodes. Acta Physica Sinica, 2008, 57(9): 5869-5874. doi: 10.7498/aps.57.5869
    [18] He Bao-Ping, Chen Wei, Wang Gui-Zhen. A comparison of ionizing radiation damage in CMOS devices from 60Co Gamma rays, electrons and protons. Acta Physica Sinica, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [19] He Chao-Hui, Geng Bin, He Bao-Ping, Yao Yu-Juan, Li Yong-Hong, Peng Hong-Lun, Lin Dong-Sheng, Zhou Hui, Chen Yu-Sheng. Test methods of total dose effects in verylarge scale integrated circuits. Acta Physica Sinica, 2004, 53(1): 194-199. doi: 10.7498/aps.53.194
    [20] GUO HONG-XIA, CHEN YU-SHENG, ZHANG YI-MEN, ZHOU HUI, GONG JIAN-CHENG, HAN FU-BIN, GUAN YING, WU GUO-RONG. STUDY OF RELATIVE DOSE-ENHANCEMENT EFFECTS ON CMOS DEVICE IRRADIATED BY STEADY-STATE AND TRANSIENT PULSED X-RAYS. Acta Physica Sinica, 2001, 50(12): 2279-2283. doi: 10.7498/aps.50.2279
Metrics
  • Abstract views:  5512
  • PDF Downloads:  126
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2018
  • Accepted Date:  20 May 2018
  • Published Online:  20 August 2019

/

返回文章
返回