Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transmission characteristics of terahertz wave in high temperature plasma

Meng Ling-Hui Ren Hong-Bo Liu Jian-Xiao

Citation:

Transmission characteristics of terahertz wave in high temperature plasma

Meng Ling-Hui, Ren Hong-Bo, Liu Jian-Xiao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the hypersonic flight, the air surrounding an aircraft under the effect of high temperature will be ionized. The ionized gas is called plasma. Because of the influence of interaction between electromagnetic wave, in some cases the communication will be interrupted. High temperature effect is an important characteristic of the plasma. Therefore, the study of terahertz wave propagation in high temperature plasma is of great significance. In this paper, the transmission of terahertz wave in a high temperature plasma slab is studied. Generally, high temperature plasma is an anisotropic medium. The electromagnetic wave propagates in anisotropic high-temperature plasma and forms left-hand circular polarization mode or right-hand circular polarization (RCP) mode. It is found that the RCP wave can exhibit some novel characteristics, such as the forbidden band transmission characteristics, which is discovered in this paper. The transmission characteristics of terahertz wave in high temperature plasma are studied analytically. The results show that when the frequency of terahertz wave is lower than plasma frequency, the wave cannot be propagated in high temperature plasma, and it shows a stopband characteristic. When the frequency is higher, it can be transmitted through the plasma, and it presents a passband characteristic. These are consistent with the propagation characteristics of electromagnetic waves in cold plasma. However, some characteristics in high temperature plasma are different from those in the cold plasma. In high temperature plasma, the transmission characteristics are influenced by the electron temperature and external magnetic field. When the two parameters are chosen appropriately, a sharp transmission peak will be produced in the stopband. This phenomenon has never been found in cold plasma models before. And the paper will discuss this problem by the two influencing factors. It is also found that the frequency of the transmission peak is affected by magnetic field, and the peak amplitude is influenced by electron temperature. The electron temperatures at high transmittance (transmittance is about 1) under different applied magnetic fields are calculated. In order to study the law embodied in the data, the method of data fitting is adopted. And the formula of transmission peak frequency is obtained by curve fitting. The fitting results show that the transmission peak frequency is proportional to the external magnetic field. The relationship between peak electron temperature and external magnetic field is exponential. Finally, the fitting formula is verified by the finite-difference time-domain method. The numerical results are in good agreement with the analytical solution results, which proves the correctness of the work.
      Corresponding author: Liu Jian-Xiao, lxf9431@sina.com
    [1]

    Zheng L, Zhao Q, Liu S Z, Xing X J 2012 Acta Phys. Sin. 61 245202 (in Chinese)[郑灵, 赵青, 刘述章, 邢晓俊 2012 物理学报 61 245202]

    [2]

    Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102 (in Chinese)[陈伟, 郭立新, 李江挺, 淡荔 2017 物理学报 66 084102]

    [3]

    Tian Y, Ai X, Han Y P, Guo L X 2015 Phys. Plasmas 22 290

    [4]

    Guo L J, Guo L X, Li J T 2017 Phys. Plasmas 24 022108

    [5]

    Gu L, Tan Z Y, Cao J C 2013 Phys. 42 695 (in Chinese)[顾立, 谭智勇, 曹俊诚 2013 物理 42 695]

    [6]

    Hu Q L, Liu S B, Li W 2008 Chin. Phys. B 17 1050

    [7]

    Zhou W, Ji K, Chen H M 2017 Acta Phys. Sin. 66 054210 (in Chinese)[周雯, 季珂, 陈鹤鸣 2017 物理学报 66 054210]

    [8]

    Chen C M, Bai Y L, Zhang J, Yang Y, Wang J 2018 High Power Laser and Particle Beams 30 013101 (in Chinese)[陈春梅, 摆玉龙, 张洁, 杨阳, 王娟 2018 强激光与粒子束 30 013101]

    [9]

    Yuan C X, Zhou Z X, Xiang X L, Sun H G, Wang H, Xing M D, Luo Z J 2011 Nucl. Instrum. Meth. B 269 23

    [10]

    Yuan C X, Zhou Z X, Zhang J W W, Xiang X L, Yue F, Sun H G 2011 IEEE Trans. Plasma Sci. 39 1577

    [11]

    Wu X G, Hu Y, Wang P, Nan L 2018 High Power Laser and Particle Beams 30 043102 (in Chinese)[伍习光, 胡洋, 王平, 南琳 2018 强激光与粒子束 30 043102]

    [12]

    Liu J X, Zhang J L, Su M M 2014 Acta Phys. Sin. 63 137501 (in Chinese)[刘建晓, 张郡亮, 苏明敏 2014 物理学报 63 137501]

    [13]

    Liu J X, Su M M, You X, Li A P, Yang H W 2013 Sci. Tech. Eng. 13 4418 (in Chinese)[刘建晓, 苏明敏, 游雄, 李爱萍, 杨宏伟 2013 科学技术与工程 13 4418]

    [14]

    Yang H W, Zhang Y, Chen R S 2007 J. Nanjing University of Science and Technology 31 491 (in Chinese)[杨宏伟, 张云, 陈如山 2007 南京理工大学学报 31 491]

    [15]

    Song W, Zhang H 2016 J. Electromagnet Wave 30 1321

    [16]

    Rahmani Z, Moradi H 2018 Optik 155 81

    [17]

    Yang H W 2012 J. Russ Laser Res. 33 356

    [18]

    Lee J H, Kalluri D K 1999 IEEE Trans. Antennas Propag. 47 1146

    [19]

    Jazi B, Rahmani Z, Shokri B 2013 IEEE Trans. Plasma Sci. 41 290

    [20]

    Xie C F, Rao K J 1999 Electromagnetic Field and Wave (3rd Ed.) (Beijing:Higher Education Press) pp237-239 (in Chinese)[谢处方, 饶克谨 1999 电磁场与电磁波(第3版) (北京:高等教育出版社) 第237–239页]

    [21]

    Platzman P M, Buchsbaum S J 1963 Phys. Rev. 132 1

    [22]

    Tian Y, Han Y P, Ling Y J, Ai X 2014 Phys. Plasmas 21 1768

  • [1]

    Zheng L, Zhao Q, Liu S Z, Xing X J 2012 Acta Phys. Sin. 61 245202 (in Chinese)[郑灵, 赵青, 刘述章, 邢晓俊 2012 物理学报 61 245202]

    [2]

    Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102 (in Chinese)[陈伟, 郭立新, 李江挺, 淡荔 2017 物理学报 66 084102]

    [3]

    Tian Y, Ai X, Han Y P, Guo L X 2015 Phys. Plasmas 22 290

    [4]

    Guo L J, Guo L X, Li J T 2017 Phys. Plasmas 24 022108

    [5]

    Gu L, Tan Z Y, Cao J C 2013 Phys. 42 695 (in Chinese)[顾立, 谭智勇, 曹俊诚 2013 物理 42 695]

    [6]

    Hu Q L, Liu S B, Li W 2008 Chin. Phys. B 17 1050

    [7]

    Zhou W, Ji K, Chen H M 2017 Acta Phys. Sin. 66 054210 (in Chinese)[周雯, 季珂, 陈鹤鸣 2017 物理学报 66 054210]

    [8]

    Chen C M, Bai Y L, Zhang J, Yang Y, Wang J 2018 High Power Laser and Particle Beams 30 013101 (in Chinese)[陈春梅, 摆玉龙, 张洁, 杨阳, 王娟 2018 强激光与粒子束 30 013101]

    [9]

    Yuan C X, Zhou Z X, Xiang X L, Sun H G, Wang H, Xing M D, Luo Z J 2011 Nucl. Instrum. Meth. B 269 23

    [10]

    Yuan C X, Zhou Z X, Zhang J W W, Xiang X L, Yue F, Sun H G 2011 IEEE Trans. Plasma Sci. 39 1577

    [11]

    Wu X G, Hu Y, Wang P, Nan L 2018 High Power Laser and Particle Beams 30 043102 (in Chinese)[伍习光, 胡洋, 王平, 南琳 2018 强激光与粒子束 30 043102]

    [12]

    Liu J X, Zhang J L, Su M M 2014 Acta Phys. Sin. 63 137501 (in Chinese)[刘建晓, 张郡亮, 苏明敏 2014 物理学报 63 137501]

    [13]

    Liu J X, Su M M, You X, Li A P, Yang H W 2013 Sci. Tech. Eng. 13 4418 (in Chinese)[刘建晓, 苏明敏, 游雄, 李爱萍, 杨宏伟 2013 科学技术与工程 13 4418]

    [14]

    Yang H W, Zhang Y, Chen R S 2007 J. Nanjing University of Science and Technology 31 491 (in Chinese)[杨宏伟, 张云, 陈如山 2007 南京理工大学学报 31 491]

    [15]

    Song W, Zhang H 2016 J. Electromagnet Wave 30 1321

    [16]

    Rahmani Z, Moradi H 2018 Optik 155 81

    [17]

    Yang H W 2012 J. Russ Laser Res. 33 356

    [18]

    Lee J H, Kalluri D K 1999 IEEE Trans. Antennas Propag. 47 1146

    [19]

    Jazi B, Rahmani Z, Shokri B 2013 IEEE Trans. Plasma Sci. 41 290

    [20]

    Xie C F, Rao K J 1999 Electromagnetic Field and Wave (3rd Ed.) (Beijing:Higher Education Press) pp237-239 (in Chinese)[谢处方, 饶克谨 1999 电磁场与电磁波(第3版) (北京:高等教育出版社) 第237–239页]

    [21]

    Platzman P M, Buchsbaum S J 1963 Phys. Rev. 132 1

    [22]

    Tian Y, Han Y P, Ling Y J, Ai X 2014 Phys. Plasmas 21 1768

  • [1] Yang Yu-Sen, Wang Lin, Gou De-Zhi, Tang Zheng-Ming. Electromagnetic characteristics of waveguide model of plasma-photon crystal array structure. Acta Physica Sinica, 2024, 73(24): 245201. doi: 10.7498/aps.73.20241300
    [2] Zhao Xin-Li, Ma Guo-Liang, Ma Yu-Gang. Electromagnetic field effects and anomalous chiral phenomena in heavy-ion collisions at intermediate and high energy. Acta Physica Sinica, 2023, 72(11): 112502. doi: 10.7498/aps.72.20230245
    [3] Ma Hao-Jun, Wang Guo-Lin, Luo Jie, Liu Li-Ping, Pan De-Xian, Zhang Jun, Xing Ying-Li, Tang Fei. Experimental study of electromagnetic wave transmission characteristics in S-Ka band in plasma. Acta Physica Sinica, 2018, 67(2): 025201. doi: 10.7498/aps.67.20170845
    [4] Cheng Yu-Guo, Cheng Mou-Sen, Wang Mo-Ge, Li Xiao-Kang. Numerical study on the effects of magnetic field on helicon plasma waves and energy absorption. Acta Physica Sinica, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [5] Tang Tian-Tian, Wang De-Hua, Huang Kai-Yun, Wang Shan-Shan. Photo-detachment of hydrogen negative ion in a magnetic field near a dielectric surface. Acta Physica Sinica, 2012, 61(6): 063202. doi: 10.7498/aps.61.063202
    [6] Zou Xiu, Ji Yan-Kun, Zou Bin-Yan. The Bohm criterion for a collisional plasma sheath in an oblique magnetic field. Acta Physica Sinica, 2010, 59(3): 1902-1906. doi: 10.7498/aps.59.1902
    [7] Zou Xiu, Zou Bin-Yan, Liu Hui-Ping. Effect of external magnetic field on ion energy density of collisional radio-frequency sheath. Acta Physica Sinica, 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [8] Zhou Lei, Tang Chang-Jian. Interactions of electromagnetic wave and Langmuir wave in an inhomogeneous plasma. Acta Physica Sinica, 2009, 58(12): 8254-8259. doi: 10.7498/aps.58.8254
    [9] Yang Juan, Long Chun-Wei, Chen Mao-Lin, Xu Ying-Qiao, Tan Xiao-Qun. Experimental study on the effect of applied magnetic field on plane wave attenuation by microwave plasma plume. Acta Physica Sinica, 2009, 58(7): 4793-4798. doi: 10.7498/aps.58.4793
    [10] Experimental study on attenuation of differently polarized wave by microwave plasma jet in vacuum. Acta Physica Sinica, 2007, 56(12): 7120-7126. doi: 10.7498/aps.56.7120
    [11] Yang Hong-Wei, Chen Ru-Shan, Zhang Yun. SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma. Acta Physica Sinica, 2006, 55(7): 3464-3469. doi: 10.7498/aps.55.3464
    [12] Zhu Bing, Yang Juan, Huang Xue-Gang, Mao Gen-Wang, Liu Jun-Ping. Experimental study on the plasma jet attenuation of reflected wave in vacuum environment. Acta Physica Sinica, 2006, 55(5): 2352-2356. doi: 10.7498/aps.55.2352
    [13] Yang Juan, Zhu Liang-Ming, Su Wei-Yi, Mao Gen-Wang. Calculation of the wave reflecting characteristics of magnetized plasma surface. Acta Physica Sinica, 2005, 54(7): 3236-3240. doi: 10.7498/aps.54.3236
    [14] Song Fa-Lun, Cao Jin-Xiang, Wang Ge. A model of the absorption of electromagnetic waves by weakly ionized plasma and the numerical calculation. Acta Physica Sinica, 2005, 54(2): 807-811. doi: 10.7498/aps.54.807
    [15] Zou Xiu, Liu Jin-Yuan, Wang Zheng-Xiong, Gong Ye, Liu Yue, Wang Xiao-Gang. Plasma sheath in a magnetic field. Acta Physica Sinica, 2004, 53(10): 3409-3412. doi: 10.7498/aps.53.3409
    [16] Song Fa-Lun, Cao Jin-Xiang, Wang Ge. The attenuation of electromagnetic waves by inhomogeneous spherically symmetric plasma. Acta Physica Sinica, 2004, 53(4): 1110-1115. doi: 10.7498/aps.53.1110
    [17] Su Wei-Yi, Yang Juan, Wei Kun, Mao Gen-Wang, He Hong-Qing. Calculation and analysis on the wave reflected characteristics of plasma before the conductor plate. Acta Physica Sinica, 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [18] Oyang Shi-Gen, Guan Yi, She Wei-Long. . Acta Physica Sinica, 2002, 51(7): 1596-1599. doi: 10.7498/aps.51.1596
    [19] Tang De-Li, Sun Ai-Ping, Qui Xiao-Ming. . Acta Physica Sinica, 2002, 51(8): 1724-1729. doi: 10.7498/aps.51.1724
    [20] Liu Ming-Hai, Hu Xi-Wei, Jiang Zhong-He, Liu Ke-Fu, Gu Cheng-Lin, Pan Yuan. . Acta Physica Sinica, 2002, 51(6): 1317-1320. doi: 10.7498/aps.51.1317
Metrics
  • Abstract views:  6599
  • PDF Downloads:  127
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2018
  • Accepted Date:  21 April 2018
  • Published Online:  05 September 2018

/

返回文章
返回