Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Time jitter characteristics of GaAs photoconductive semiconductor switch in linear mode

Gui Huai-Meng Shi Wei

Citation:

Time jitter characteristics of GaAs photoconductive semiconductor switch in linear mode

Gui Huai-Meng, Shi Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Time precision switching is crucial to a high-precision synchronization control system with several synchronized sources. Compared with the other high-power switches, a GaAs photoconductive semiconductor switch (PCSS) with a litter time jitter has been widely used in a precision synchronization control system. There is little work on the time jitter of a GaAs PCSS. In this paper, a formula of GaAs PCSS time jitter is derived by the qualitative theoretical derivation through using the probability distribution of the output electrical pulse and the corresponding relation between the time and electrical waveform of GaAs PCSS, and combining the carrier transport process. In experiment, a neodymium-doped yttrium aluminum garnet nanosecond laser beam is split by a semipermeable half mirror into two optical beams, and then these two beams simultaneously trigger two identical GaAs PCSSs in two parallel circuits. As the energy of a triggering laser pulse is fixed at 0.35 mJ, four different laser pulse widths, namely 30 ns, 22 ns, 16 ns and 11 ns, respectively, are used to trigger the GaAs PCSSs. The bias voltage changes from 0.1 kV to 1 kV in steps of 0.1 kV, and it is used in the above-mentioned experiment. The PCSSs are triggered 20 times at each of the bias voltage values. The time jitter of the GaAs PCSS with a 3-mm gap can be measured. By analyzing the experimental data, we conclude that the time jitter of the GaAs PCSS decreases with the triggering laser pulse width decreasing under the condition of different bias voltage. In the linear mode, the GaAs PCSS illuminated by a photon with a proper wavelength creates an electron-hole pair. The characteristic of the triggering laser pulse determines that of the output electrical pulse. With the energy of triggering laser pulse fixed, the fluctuation of electrical pulse increases fast with its pulse width decreasing. Moreover, according to the derived formula for a time jitter, the GaAs PCSS time jitter decreases with triggering laser pulse width narrowing, under the different externally applied bias voltages. It is demonstrated that the theoretical and experimental results of the relationship between the triggering laser pulse width and the GaAs PCSS time jitter are consistent. The obtained results provide a basis for further reducing the GaAs PCSS time jitter, which is important for a next-generation fusion research facility and laser trigger antenna array of generating short pulse sequence.
      Corresponding author: Shi Wei, swshi@mail.xaut.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB339802), the National Natural Science Foundation of China (Grant Nos. 61427814, 51377133), the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, China (Grant No. SKLIPR1812), and the Special Scientific Research Plan of Shaanxi Provincial Education Department, China (Grant No. 17JK0056).
    [1]

    Zutavern F J, Armijo J C, Cameron S M, Denison G J, Lehr J M, Luk T S, Mar A, O'Malley M W, Roose L D, Rudd J V 2003 14th IEEE International Pulsed Power Conference Texas, USA, June 15-18, 2003 p591

    [2]

    Zutavern F J, Reed K W, Glover S F, Mar A, Ruebush M H, Horry M L, Swalby M E, Alexander J A, Smith T L 2005 2005 IEEE Pulsed Power Conference Washington, USA, May 14-18, 2005 p81

    [3]

    Hu L, Su J C, Ding Z J, Hao Q S 2015 IEEE Electr. Device Lett. 36 1176

    [4]

    Appiah G N, Jang S R, Bae J S, Cho C G, Song S H, Ryoo H J 2017 IEEE Trans. Dielect. Elect. In. 24 2006

    [5]

    Song B B, Do K I, Koo Y S 2018 IEEE J. Electron Dev. 6 691

    [6]

    Zutavern F J, Glover S F, Swalby M E, Cich M J, Mar A, Loubriel G M, Roose L D, White F E 2010 IEEE Trans. Plasma Sci. 38 2708

    [7]

    Schoenberg J S H, Burger J W, Tyo J S, Abdalla M D, Skipper M C, Buchwald W R 1997 IEEE Trans. Plasma Sci. 25 327

    [8]

    Xu M, Li R B, Ma C, Shi W 2016 IEEE Electr. Device Lett. 37 1147

    [9]

    Zhang T, Liu K F, Gao S J, Shi Y W 2015 IEEE Trans. Dielect. Elect. In. 22 1991

    [10]

    Vergne B, Couderc V, Leveque P 2008 IEEE Photon. Technol. Lett. 20 2132

    [11]

    Shi W, Wang X M, Hou L 2013 IEEE Trans. Electron Dev. 60 1361

    [12]

    Ruan C, Zhao W, Chen G F, Zhu S L 2007 Microw. Opt. Technol. Lett. 49 1118

    [13]

    Shi W, Yan Z J 2015 Acta Phys. Sin. 64 228702 (in Chinese) [施卫, 闫志巾 2015 物理学报 64 228702]

    [14]

    Eric E F, Chi H L 1996 IEEE Trans. Microw. Theory 44 2039

    [15]

    Xu M, Bian K K, Ma C, Jia H J, An X, Shi W 2016 Opt. Lett. 41 4387

    [16]

    Gaudet J A, Skipper M C, Abdalla M D, Ahem S M, Romero S P, Mar A, Zutavem F J, Loubriel G M, O'Malley M W, Helgeson W D 2000 Intense Microwave Pulses VⅡ Orlando, USA, April 24-28, 2000 p121

    [17]

    Saad E A, Annalisa D A, Delia A C, Vincent C, Philippe L 2011 IEEE Photon. Technol. Lett. 23 673

    [18]

    Shi W, Fu Z L 2013 IEEE Electr. Dev. Lett. 34 93

    [19]

    Shi W, Zhang L, Gui H M, Hou L, Xu M, Qu G H 2013 Appl. Phys. Lett. 102 154106

    [20]

    Shi W, Gui H M, Zhang L, Ma C, Li M X, Xu M, Wang L Y 2013 Opt. Lett. 38 2330

    [21]

    Shi W, Gui H M, Zhang L, Li M C, Ma C, Wang L Y, Jiang H 2013 Opt. Lett. 38 4339

    [22]

    Gui H M, Shi W, Ma C, Fan L L, Zhang L, Zhang S, Xu Y J 2015 IEEE Photon. Technol. Lett. 27 2001

    [23]

    Liu J Y, Wang J, Shan B, Wang C, Chang Z H 2004 Fourth-Generation X-Ray Sources and Ultrafast X-Ray Detectors California, USA, August 4-6, 2004 p123

  • [1]

    Zutavern F J, Armijo J C, Cameron S M, Denison G J, Lehr J M, Luk T S, Mar A, O'Malley M W, Roose L D, Rudd J V 2003 14th IEEE International Pulsed Power Conference Texas, USA, June 15-18, 2003 p591

    [2]

    Zutavern F J, Reed K W, Glover S F, Mar A, Ruebush M H, Horry M L, Swalby M E, Alexander J A, Smith T L 2005 2005 IEEE Pulsed Power Conference Washington, USA, May 14-18, 2005 p81

    [3]

    Hu L, Su J C, Ding Z J, Hao Q S 2015 IEEE Electr. Device Lett. 36 1176

    [4]

    Appiah G N, Jang S R, Bae J S, Cho C G, Song S H, Ryoo H J 2017 IEEE Trans. Dielect. Elect. In. 24 2006

    [5]

    Song B B, Do K I, Koo Y S 2018 IEEE J. Electron Dev. 6 691

    [6]

    Zutavern F J, Glover S F, Swalby M E, Cich M J, Mar A, Loubriel G M, Roose L D, White F E 2010 IEEE Trans. Plasma Sci. 38 2708

    [7]

    Schoenberg J S H, Burger J W, Tyo J S, Abdalla M D, Skipper M C, Buchwald W R 1997 IEEE Trans. Plasma Sci. 25 327

    [8]

    Xu M, Li R B, Ma C, Shi W 2016 IEEE Electr. Device Lett. 37 1147

    [9]

    Zhang T, Liu K F, Gao S J, Shi Y W 2015 IEEE Trans. Dielect. Elect. In. 22 1991

    [10]

    Vergne B, Couderc V, Leveque P 2008 IEEE Photon. Technol. Lett. 20 2132

    [11]

    Shi W, Wang X M, Hou L 2013 IEEE Trans. Electron Dev. 60 1361

    [12]

    Ruan C, Zhao W, Chen G F, Zhu S L 2007 Microw. Opt. Technol. Lett. 49 1118

    [13]

    Shi W, Yan Z J 2015 Acta Phys. Sin. 64 228702 (in Chinese) [施卫, 闫志巾 2015 物理学报 64 228702]

    [14]

    Eric E F, Chi H L 1996 IEEE Trans. Microw. Theory 44 2039

    [15]

    Xu M, Bian K K, Ma C, Jia H J, An X, Shi W 2016 Opt. Lett. 41 4387

    [16]

    Gaudet J A, Skipper M C, Abdalla M D, Ahem S M, Romero S P, Mar A, Zutavem F J, Loubriel G M, O'Malley M W, Helgeson W D 2000 Intense Microwave Pulses VⅡ Orlando, USA, April 24-28, 2000 p121

    [17]

    Saad E A, Annalisa D A, Delia A C, Vincent C, Philippe L 2011 IEEE Photon. Technol. Lett. 23 673

    [18]

    Shi W, Fu Z L 2013 IEEE Electr. Dev. Lett. 34 93

    [19]

    Shi W, Zhang L, Gui H M, Hou L, Xu M, Qu G H 2013 Appl. Phys. Lett. 102 154106

    [20]

    Shi W, Gui H M, Zhang L, Ma C, Li M X, Xu M, Wang L Y 2013 Opt. Lett. 38 2330

    [21]

    Shi W, Gui H M, Zhang L, Li M C, Ma C, Wang L Y, Jiang H 2013 Opt. Lett. 38 4339

    [22]

    Gui H M, Shi W, Ma C, Fan L L, Zhang L, Zhang S, Xu Y J 2015 IEEE Photon. Technol. Lett. 27 2001

    [23]

    Liu J Y, Wang J, Shan B, Wang C, Chang Z H 2004 Fourth-Generation X-Ray Sources and Ultrafast X-Ray Detectors California, USA, August 4-6, 2004 p123

  • [1] Tian Li-Qiang, Pan Cong, Shi Wei, Pan Yi-Ke, Ran En-Ze, Li Cun-Xia. Mechanism of avalanche charge domain transport for nonlinear mode of GaAs photoconductive semiconductor switches. Acta Physica Sinica, 2023, 72(17): 178101. doi: 10.7498/aps.72.20230711
    [2] Gui Huai-Meng, Shi Wei. Effect of capacitance on positive and negative symmetric pulse with fast rising edge based on GaAsphotoconductive semiconductor switch. Acta Physica Sinica, 2019, 68(19): 194206. doi: 10.7498/aps.68.20190321
    [3] Sun Hua-Juan, Yan Xiao-Hong, Hao Xue-Yuan. A method of adaptive pulse width modulation for multiple-valued data transmission. Acta Physica Sinica, 2015, 64(1): 018402. doi: 10.7498/aps.64.018402
    [4] Shi Wei, Yan Zhi-Jin. Research progress on avalanche multiplication GaAs photoconductive terahertz emitter. Acta Physica Sinica, 2015, 64(22): 228702. doi: 10.7498/aps.64.228702
    [5] Qin Peng, Song You-Jian, Hu Ming-Lie, Chai Lu, Wang Qing-Yue. Timing synchronization based on mode-locked fiber lasers with attosecond timing jitter. Acta Physica Sinica, 2015, 64(22): 224209. doi: 10.7498/aps.64.224209
    [6] Hao Xiang, Xie Rui-Liang, Yang Xu, Liu Tao, Huang Lang. Bifurcation and chaos in sliding mode controlled first-order h-bridge inverter based on pulse width modulation. Acta Physica Sinica, 2013, 62(20): 200503. doi: 10.7498/aps.62.200503
    [7] Shi Wei, Ma Xiang-Rong, Xue Hong. Transient thermal effect of semi-insulating GaAs photoconductive switch. Acta Physica Sinica, 2010, 59(8): 5700-5705. doi: 10.7498/aps.59.5700
    [8] Wang Jin-Dong, Wei Zheng-Jun, Zhang Hui, Zhang Hua-Ni, Chen Shuai, Qin Xiao-Juan, Guo Jian-Ping, Liao Chang-Jun, Liu Song-Hao. The influence of the time delay through long trunk fiber on the phase-coding quantum key distribution system. Acta Physica Sinica, 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [9] Shi Wei, Xue Hong, Ma Xiang-Rong. Characteristics of photoconductivity oscillation in semi-insulating GaAs photoconductive semiconductor switches. Acta Physica Sinica, 2009, 58(12): 8554-8559. doi: 10.7498/aps.58.8554
    [10] Shi Wei, Qu Guang-Hui, Wang Xin-Mei. Ultrafast rising of output electric impulse of lock-on model of semi-insulated GaAs photoconductive switches. Acta Physica Sinica, 2009, 58(1): 477-481. doi: 10.7498/aps.58.477
    [11] Zhao Huan, Zhao Yan-Ying, Tian Jin-Rong, Wang Peng, Zhu Jiang-Feng, Ling Wei-Jun, Wei Zhi-Yi. Highly precise active-synchronization between two independent femotosecond Ti: sapphire oscillators. Acta Physica Sinica, 2008, 57(2): 892-896. doi: 10.7498/aps.57.892
    [12] Liu Shi-Jie, Ma Jian-Yong, Shen Zi-Cai, Kong Wei-Jin, Shen Jian, Jin Yun-Xia, Zhao Yuan-An, Shao Jian-Da, Fan Zheng-Xiu. Performance of multilayer dielectric grating irradiated by ultrashort optical pulse. Acta Physica Sinica, 2007, 56(8): 4542-4549. doi: 10.7498/aps.56.4542
    [13] Jin Xing-Yu, Qiu Xi-Jun, Zhu Zhi-Yuan. The influence of initial physical parameters on laser pulse in the relativistic laser-plasma system. Acta Physica Sinica, 2006, 55(10): 5338-5343. doi: 10.7498/aps.55.5338
    [14] Chen Shu-Qi, Liu Zhi-Bo, Zhou Wen-Yuan, Tian Jian-Guo Zang Wei-Ping, Zang Wei-Ping, Song Feng, Zhang Chun-Ping. The influence of pulse width on transient thermally induced optical nonlinearities in a Kerr nonlinear medium. Acta Physica Sinica, 2004, 53(10): 3577-3582. doi: 10.7498/aps.53.3577
    [15] Shi Wei, Ma De-Ming, Zhao Wei. Generation of steady and jitter-free ultra-fast electrical pulses with GaAs photoconductive switches. Acta Physica Sinica, 2004, 53(6): 1716-1720. doi: 10.7498/aps.53.1716
    [16] Wang Yun-Cai. Experimental study on the timing jitter of gain-switched laser diodes with photo n injection. Acta Physica Sinica, 2003, 52(9): 2190-2193. doi: 10.7498/aps.52.2190
    [17] Shi Wei, Zhao Wei, Zhang Xian-Bin, Li En-Ling. . Acta Physica Sinica, 2002, 51(4): 867-872. doi: 10.7498/aps.51.867
    [18] Wang Xu-fang, Yao Min-yu, Xu Lei, Zhang Jian-feng, Chen Ming-hua, Gao Yi-zhi. . Acta Physica Sinica, 2000, 49(3): 475-479. doi: 10.7498/aps.49.475
    [19] CHAO YUE-SHENG, XIAO SU-HONG. THE PHYSICAL MECHANISM OF PROMOTED AMORPHOUS CRYSTALLIZATION BY MULTIPLE ULTRASHORT ELECTROPULSING. Acta Physica Sinica, 1998, 47(12): 2012-2017. doi: 10.7498/aps.47.2012
    [20] LIN JIN-GU, LIU CHENG-HUI, ZHU ZHEN-HE, LAI RUI-SHENG, HUO CHONG-RU. PULSE WIDTH MEASUREMENT OF THE PASSIVELY MODE-LOCKED Nd:YAG LASER BY NONCOLLINEAR SHG METHOD. Acta Physica Sinica, 1980, 29(3): 406-408. doi: 10.7498/aps.29.406
Metrics
  • Abstract views:  4912
  • PDF Downloads:  61
  • Cited By: 0
Publishing process
  • Received Date:  27 March 2018
  • Accepted Date:  20 May 2018
  • Published Online:  20 September 2019

/

返回文章
返回