Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Organic color photodetectors based on tri-phase bulk heterojunction with wide sectrum and photoelectronic mltiplication

An Tao Tu Chuan-Bao Gong Wei

Citation:

Organic color photodetectors based on tri-phase bulk heterojunction with wide sectrum and photoelectronic mltiplication

An Tao, Tu Chuan-Bao, Gong Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to obtain highly sensitive broadband organic photodetectors (OPDs) used for image sensors with the stable ability to detect three primary colors (RGB), in this paper, the spectral broadening of organic active layer based on tri-phase bulk heterojunction formed by P3HT:PCBM doped with narrow band material PBDT-TT-F which absorbs red light is investigated. The influences of PBDT-TT-F doping ratio on the morphology of active layer film and detector photoelectric properties are further analyzed. Finally, the operating mechanism of trap-assisted photoelectronic multiplication is discussed. On this basis, the detector with 350-750 nm wide spectrum is obtained where the optimum mixing ratio of P3HT:PCBM:PBDT-TT-F is 12:8:3. At a small reverse bias of 1 V, the values of responsivity and external quantum efficiency of the photodetector can reach 470, 381, 450 mA/W and 93%, 89%, 121% respectively under the illumination of three primary colors and its normalized detectivity to the RGB is close to 1012 Jones. Additionally, the maximum relative difference between each parameter and its average value is lower than 20%; the bandwidths are 5, 8, and 8 kHz respectively, which reach the imaging requirements for image sensors. The experimental results show that not only the absorption spectra of the active layer can be broadened but also the carriers collection efficiency of respective electrodes can be well maintained by adding a small quantity of spectral broadening material while keeping the microstructure of the original binary bulk heterojunction. Utilizing the reasonable combination of materials to form electron traps, photoelectronic multiplication can be realized by trap-assisted hole tunneling injection from the Al cathode into active layer, and thus improving the normalized detectivity. Moreover, in order to detect different light intensities, the hole injection barrier width should be controlled by the corresponding light intensity. The resulting OPD shows a good liner response to all three primary colors when light intensity increases from 0.1 to 10 mW/cm2. By adjusting the mixing ratio of the tri-phase materials, the stable ability to detect the primary color can be achieved. The present study paves the way for high responsivity broadband OPDs based on tri-phase bulk heterojunction.
      Corresponding author: An Tao, antao@xaut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shaanxi, China (Grant No. 2015JM6267).
    [1]

    Ross D, Ardalan A, Ajay K P, Paul L B, Paul M 2016 Adv. Mater. 28 4766

    [2]

    Lei S Y, Zhong J, Zhou D L, Zhu F Y, Deng C X 2017 Chin. Phys. B 26 117001

    [3]

    Shuttle C G, Treat N D, Douglas J D, Frchet J M J, Chabinyc M L 2012 Adv. Energ. Mater. 2 111

    [4]

    Xiao B, Zhang M L, Wang H B, Liu J Y 2017 Acta Phys. Sin. 66 228501 (in Chinese) [肖标, 张敏莉, 王洪波, 刘继延 2017 物理学报 66 228501]

    [5]

    Garcia-Belmonte G, Boix P P, Bisquert J, Sessolo M, Bolink H J 2010 Sol. Energ. Mat. Sol. Cell 94 366

    [6]

    Wang Y, Zhu L J, Hu Y F, Deg Z B, Lou Z D, Hou Y B, Teng F 2017 Opt. Express 25 7719

    [7]

    Shin H J, Kim J H, Lee C H 2017 J. Korean Phys. Soc. 71 196

    [8]

    Baierl D, Schmidt M, Scarpa G, Lugli P, Pancheri L, Stoppa D, Betta G F D 2011 7th Conference on Ph.D. Research in Microelectronics and Electronics IEEE Trento, Italy, July 3-7, 2011 p89

    [9]

    Baierl D, Pancheri L, Schmidt M, Stoppa D, Betta G F D, Scarpa G, Lugli P 2012 Nat. Commun. 3 1175

    [10]

    Mori M, Hirose Y, Segawa M, Miyanaga I 2013 Digest of Technical Papers Symposium on VLSI Technology Kyoto, Japan, June 12-14, 2013 T22

    [11]

    Isono S, Satake T, Hyakushima T, Taki K 2013 International Interconnect Technology Conference Kyoto, Japan, June 13-15, 2013 p6615587

    [12]

    Aihara S, Seo H, Namba M, Watabe T, Ohtake H, Kubota M, Egami N, Hiramatsu T, Matsuda T, Furuta M 2009 IEEE Tran. Electron Dev. 56 2570

    [13]

    Seo H, Aihara S, Watabe T, Ohtake H, Sakai T, Kubota M, Egami M 2011 Jpn. J. Appl. Phys. 50 024103

    [14]

    Seo H, Sakai T, Ohtake H, Furuta M 2014 IEEE SENSORS Valencia, Spain, November 2-5, 2014 p1672

    [15]

    Hu Z, Tang S, Ahlvers A, Khondaker S I, Gesquiere A J 2012 Appl. Phys. Lett. 101 053308

    [16]

    Yong J C, Lee J Y, Chin B D, Forrest S R 2013 Org. Electron. 14 1081

    [17]

    Huang J S, Goh T, Li X, Sfeir M Y, Bielinski E A, Tomasulo S, Lee M L, Hazari N, Taylor A D 2013 Nat. Photon. 7 479

    [18]

    Cha H, Chung D S, Bae S Y, Lee M J, An T K, Hwang J, Kim K H, Kim Y H, Choi D H, Park C E 2013 Adv. Funct. Mater. 23 1556

    [19]

    Deng L J, Zhao S L, Xu Z, Zhao L, Wang L 2016 Acta Phys. Sin. 65 078801 (in Chinese) [邓丽娟, 赵谡玲, 徐征, 赵玲, 王林 2016 物理学报 65 078801]

    [20]

    Chen F C, Chien S C, Cious G L 2010 Appl. Phys. Lett. 97 103301

    [21]

    Gao M, Wang W, Li L, Miao J, Zhang F 2017 Chin. Phys. B 26 018201

    [22]

    Nie R, Deng X, Feng L, Hu G, Wang Y, Yu G, Xu J 2017 Small 13 1603260

    [23]

    Nie R, Zhao Z, Deng X 2017 Synth. Met. 227 163

    [24]

    An T, Tu C B, Yang S, Wu J Y 2017 Chin. J. Lumin. 38 1643 (in Chinese) [安涛, 涂传宝, 杨圣, 吴俊宇 2017 发光学报 38 1643]

    [25]

    Wei G, Wang S, Renshaw K, Thompson M E, Forrest S R 2010 ACS Nano 4 1927

    [26]

    Guo X, Zhang M, Tan J, Zhang S, Huo L, Hu W, Li Y, Hou J 2012 Adv. Mater. 24 6536

    [27]

    Baumann A, Lorrmann J, Deibel C, Dyakonov V 2008 Appl. Phys. Lett. 93 252104

    [28]

    Vakhshouri K, Kozub D R, Wang C, Salleo A, Gomez E D 2012 Phys. Rev. Lett. 108 026601

    [29]

    Arredondo B, Dios C D, Vergaz R, Criado A R, Romero B, Zimmermann B, Wrfel U 2013 Org. Electron 14 2484

    [30]

    Li L, Zhang F, Wang W, An Q, Wang J, Sun Q, Zhang M 2015 ACS Appl. Mater. Interf. 7 5890

    [31]

    Gao Y L 2010 Mater. Sci. Eng. R. 68 39

    [32]

    Liu X D, L L F, Hou Y B (in Chinese) [刘贤德, 吕龙峰, 侯延冰 2015 发光学报 36 666]

  • [1]

    Ross D, Ardalan A, Ajay K P, Paul L B, Paul M 2016 Adv. Mater. 28 4766

    [2]

    Lei S Y, Zhong J, Zhou D L, Zhu F Y, Deng C X 2017 Chin. Phys. B 26 117001

    [3]

    Shuttle C G, Treat N D, Douglas J D, Frchet J M J, Chabinyc M L 2012 Adv. Energ. Mater. 2 111

    [4]

    Xiao B, Zhang M L, Wang H B, Liu J Y 2017 Acta Phys. Sin. 66 228501 (in Chinese) [肖标, 张敏莉, 王洪波, 刘继延 2017 物理学报 66 228501]

    [5]

    Garcia-Belmonte G, Boix P P, Bisquert J, Sessolo M, Bolink H J 2010 Sol. Energ. Mat. Sol. Cell 94 366

    [6]

    Wang Y, Zhu L J, Hu Y F, Deg Z B, Lou Z D, Hou Y B, Teng F 2017 Opt. Express 25 7719

    [7]

    Shin H J, Kim J H, Lee C H 2017 J. Korean Phys. Soc. 71 196

    [8]

    Baierl D, Schmidt M, Scarpa G, Lugli P, Pancheri L, Stoppa D, Betta G F D 2011 7th Conference on Ph.D. Research in Microelectronics and Electronics IEEE Trento, Italy, July 3-7, 2011 p89

    [9]

    Baierl D, Pancheri L, Schmidt M, Stoppa D, Betta G F D, Scarpa G, Lugli P 2012 Nat. Commun. 3 1175

    [10]

    Mori M, Hirose Y, Segawa M, Miyanaga I 2013 Digest of Technical Papers Symposium on VLSI Technology Kyoto, Japan, June 12-14, 2013 T22

    [11]

    Isono S, Satake T, Hyakushima T, Taki K 2013 International Interconnect Technology Conference Kyoto, Japan, June 13-15, 2013 p6615587

    [12]

    Aihara S, Seo H, Namba M, Watabe T, Ohtake H, Kubota M, Egami N, Hiramatsu T, Matsuda T, Furuta M 2009 IEEE Tran. Electron Dev. 56 2570

    [13]

    Seo H, Aihara S, Watabe T, Ohtake H, Sakai T, Kubota M, Egami M 2011 Jpn. J. Appl. Phys. 50 024103

    [14]

    Seo H, Sakai T, Ohtake H, Furuta M 2014 IEEE SENSORS Valencia, Spain, November 2-5, 2014 p1672

    [15]

    Hu Z, Tang S, Ahlvers A, Khondaker S I, Gesquiere A J 2012 Appl. Phys. Lett. 101 053308

    [16]

    Yong J C, Lee J Y, Chin B D, Forrest S R 2013 Org. Electron. 14 1081

    [17]

    Huang J S, Goh T, Li X, Sfeir M Y, Bielinski E A, Tomasulo S, Lee M L, Hazari N, Taylor A D 2013 Nat. Photon. 7 479

    [18]

    Cha H, Chung D S, Bae S Y, Lee M J, An T K, Hwang J, Kim K H, Kim Y H, Choi D H, Park C E 2013 Adv. Funct. Mater. 23 1556

    [19]

    Deng L J, Zhao S L, Xu Z, Zhao L, Wang L 2016 Acta Phys. Sin. 65 078801 (in Chinese) [邓丽娟, 赵谡玲, 徐征, 赵玲, 王林 2016 物理学报 65 078801]

    [20]

    Chen F C, Chien S C, Cious G L 2010 Appl. Phys. Lett. 97 103301

    [21]

    Gao M, Wang W, Li L, Miao J, Zhang F 2017 Chin. Phys. B 26 018201

    [22]

    Nie R, Deng X, Feng L, Hu G, Wang Y, Yu G, Xu J 2017 Small 13 1603260

    [23]

    Nie R, Zhao Z, Deng X 2017 Synth. Met. 227 163

    [24]

    An T, Tu C B, Yang S, Wu J Y 2017 Chin. J. Lumin. 38 1643 (in Chinese) [安涛, 涂传宝, 杨圣, 吴俊宇 2017 发光学报 38 1643]

    [25]

    Wei G, Wang S, Renshaw K, Thompson M E, Forrest S R 2010 ACS Nano 4 1927

    [26]

    Guo X, Zhang M, Tan J, Zhang S, Huo L, Hu W, Li Y, Hou J 2012 Adv. Mater. 24 6536

    [27]

    Baumann A, Lorrmann J, Deibel C, Dyakonov V 2008 Appl. Phys. Lett. 93 252104

    [28]

    Vakhshouri K, Kozub D R, Wang C, Salleo A, Gomez E D 2012 Phys. Rev. Lett. 108 026601

    [29]

    Arredondo B, Dios C D, Vergaz R, Criado A R, Romero B, Zimmermann B, Wrfel U 2013 Org. Electron 14 2484

    [30]

    Li L, Zhang F, Wang W, An Q, Wang J, Sun Q, Zhang M 2015 ACS Appl. Mater. Interf. 7 5890

    [31]

    Gao Y L 2010 Mater. Sci. Eng. R. 68 39

    [32]

    Liu X D, L L F, Hou Y B (in Chinese) [刘贤德, 吕龙峰, 侯延冰 2015 发光学报 36 666]

  • [1] Sun Tang-You, Yu Yan-Li, Qin Zu-Bin, Chen Zan-Hui, Chen Jun-Li, Jiang Yue, Zhang Fa-Bi. Multi-band response Cs2AgBiBr6 double perovskite photodetector based on TiO2 nanopillars. Acta Physica Sinica, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [2] Wang Ai-Wei, Zhu Lu-Ping, Shan Yan-Su, Liu Peng, Cao Xue-Lei, Cao Bing-Qiang. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [3] Zhang Mao-Lin, Ma Wan-Yu, Wang Lei, Liu Zeng, Yang Li-Li, Li Shan, Tang Wei-Hua, Guo Yu-Feng. Investigation of high-temperature performance of WO3/β-Ga2O3 heterojunction deep-ultraviolet photodetectors. Acta Physica Sinica, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [4] Wu Peng, Tan Lun, Li Wei, Cao Li-Wei, Zhao Jun-Bo, Qu Yao, Li Ang. Preparation and photoelectric property of large scale monolayer MoS2. Acta Physica Sinica, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [5] Zhao Ji-Yu, Tan Qiu-Hong, Liu Lei, Yang Wei-Ye, Wang Qian-Jin, Liu Ying-Kai. High-performance photodetectors based on Au nanoislands decorated CdSSe nanobelt. Acta Physica Sinica, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [6] Liu Xiao-Xuan, Sun Fei-Yang, Wu Ying, Yang Sheng-Yi, Zou Bing-Suo. Research progress of silicon nanowires array photodetectors. Acta Physica Sinica, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [7] Guo Yue, Sun Yi-Ming, Song Wei-Dong. Narrowband near-ultraviolet photodetector fabricated from porous GaN/CuZnS heterojunction. Acta Physica Sinica, 2022, 71(21): 218501. doi: 10.7498/aps.71.20220990
    [8] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [9] Hu Zi-Ting, Shu Xin, Wang Xiang, Li Yue, Xu Run, Hong Feng, Ma Zhong-Quan, Jiang Zui-Min, Xu Fei. Air-stable CsPbIBr2 photodetector via dual-ligand-assisted solution strategy. Acta Physica Sinica, 2022, 71(11): 116801. doi: 10.7498/aps.71.20212143
    [10] An Tao, Xue Jia-Wei, Wang Yong-Qiang. Characteristics of ternary photodetectors based on benzodithiophene polymers. Acta Physica Sinica, 2021, 70(5): 058801. doi: 10.7498/aps.70.20201185
    [11] Lei Ting, Lü Wei-Ming, Lü Wen-Xing, Cui Bo-Yao, Hu Rui, Shi Wen-Hua, Zeng Zhong-Ming. Photogating effect in two-dimensional photodetectors. Acta Physica Sinica, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [12] Zhao Yi-Mo, Huang Zhi-Wei, Peng Ren-Miao, Xu Peng-Peng, Wu Qiang, Mao Yi-Chen, Yu Chun-Yu, Huang Wei, Wang Jian-Yuan, Chen Song-Yan, Li Cheng. Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation. Acta Physica Sinica, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [13] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [14] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [15] Hu Wei-Da, Li Qing, Chen Xiao-Shuang, Lu Wei. Recent progress on advanced infrared photodetectors. Acta Physica Sinica, 2019, 68(12): 120701. doi: 10.7498/aps.68.20190281
    [16] Liu Jie, Wang Lu, Sun Ling, Wang Wen-Qi, Wu Hai-Yan, Jiang Yang, Ma Zi-Guang, Wang Wen-Xin, Jia Hai-Qiang, Chen Hong. Anomalous light-to-electricity conversion of low dimensional semiconductor in p-n junction and interband transition quantum well infrared detector. Acta Physica Sinica, 2018, 67(12): 128101. doi: 10.7498/aps.67.20180588
    [17] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [18] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun. Fabrication and characteristics of high performance SOI-based Ge PIN waveguide photodetector. Acta Physica Sinica, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [19] Yin Wei-Hong, Han Qin, Yang Xiao-Hong. The progress of semiconductor photoelectric devices based on graphene. Acta Physica Sinica, 2012, 61(24): 248502. doi: 10.7498/aps.61.248502
    [20] Guo Jian-Chuan, Zuo Yu-Hua, Zhang Yun, Zhang Ling-Zi, Cheng Bu-Wen, Wang Qi-Ming. Theoretical analysis and experimental study of the space-charge-screening effect in uni-traveling-carrier photodiode. Acta Physica Sinica, 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
Metrics
  • Abstract views:  4468
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  20 March 2018
  • Accepted Date:  11 July 2018
  • Published Online:  05 October 2018

/

返回文章
返回