Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Density reconstruction based on energy loss in proton radiography

Chen Feng Zheng Na Xu Hai-Bo

Citation:

Density reconstruction based on energy loss in proton radiography

Chen Feng, Zheng Na, Xu Hai-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A method of using energy loss to reconstruct the density is presented with protons at intermediate and high energy for proton radiography, and the equation and condition of density reconstruction are given based on the Bethe-Bolch formula. For the intermediate and high energy proton radiography, the stopping power of material is changed slowly within a certain energy range, and the stopping power can be approximated as a constant, then the multi-material object can be reconstructed by using the energy loss information. In this work, the protons at 1.6 GeV which can be obtained by China Spallation Neutron Source are used in the radiography, and the energy loss information is used in the reconstruction, and the Geant 4 is applied to Monte Carlo simulation. From the theoretical calculation and the Geant4 simulation, it can be seen that when the protons energy ranges from 1.45 GeV to 1.6 GeV the stopping power of material can be approximately constant, and the relative change of material stopping power is less than 1%, thus the stopping power of material is only dependent on the incident proton energy, and the density of the multimaterial object can be reconstructed by the energy loss information. The proton scanning imaging system which can avoid blurring image caused by multiple coulomb scattering at the receiving plane is used in the proton radiography to obtain the energy loss information. In the imaging system, two energy detectors are employed to record the incident energy and exit energy of protons, the object is scanned by the protons with a certain step length, and the object is rotated 180 or 360. The energy loss distribution of the object can be obtained by the scanning imaging system, and the density of the object can be reconstructed by solving corresponding equations. The Geant 4 is used to simulate the proton scanning imaging system. In the simulation, the object is the scaling french test object (FTO) that the areal density is 113 g/cm2, the protons are monoenergetic at 1.6 GeV, the scanning interval is 0.5 mm, and the rotation angle is 0.9. The results of the density reconstruction of the scaling FTO are in good agreement with the true values.
      Corresponding author: Zheng Na, zheng_na@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675021), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11505014), and the Presidential Foundation of China Academy of Engineering Physics (Grant No. 201402086).
    [1]

    Burtsev V V, Lebedev A I, Mikhailov A L, et al. 2011 Combust. Explo. Shock Waves 47 627

    [2]

    Morris C L, Ables E, Alrick K R, et al. 2011 J. Appl. Phys. 109 104905

    [3]

    Antipov Y M, Afonin A G, Gusev I A, et al. 2013 At. Energy 114 359

    [4]

    Antipov Y M, Afonin A G, Vasilevskii A V, et al. 2010 Instrum. Exp. Tech. 53 319

    [5]

    Varentsov D, Antonov O, Bakhmutova A, et al. 2016 Rev. Sci. Instrum. 87 023303

    [6]

    Teng J, Hong W, Zhao Z Q, Wu S C, Qin X Z, He Y L, Gu Y Q, Ding Y K 2009 Acta Phys. Sin. 58 1635 (in Chinese)[滕建, 洪伟, 赵宗清, 巫顺超, 秦孝尊, 何颖玲, 谷渝秋, 丁永坤 2009 物理学报 58 1635]

    [7]

    Teng J, Zhao Z Q, Zhu B, et al. 2011 Chin. Phys. Lett. 28 035203

    [8]

    Xu H B, Zheng N 2015 Chin. Phys. C 39 078201

    [9]

    Wu X J, Wang X F, Chen X H 2016 Chin. Phys. Lett. 33 065201

    [10]

    Yang S Q, Zhou W M, Wang S M, Jiao J L, Zhang Z M, Cao L F, Gu Y Q, Zhang B H 2017 Acta Phys. Sin. 66 184101 (in Chinese)[杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉 2017 物理学报 66 184101]

    [11]

    Yang J J, Zhen X, Wei S M, Lv Y L, Wang F, Zhang Y W, Wen L P, Liu J Y, Cai H R, Ge T, Zhang S P, Cao L, Zhang T J, Li Z G 2016 CYC 2016 Proceedings of the 21st International Conference on Cyclotrons and their Applications Zurich, September 11-16, 2016 p401

    [12]

    Merrill F E 2015 Rev. Accl. Sci. Tech. 8 165

    [13]

    Sheng L, Zhao Y, Yang G, et al. 2014 Laser Part. Beams 32 651

    [14]

    Wei T, Yang G J, Li Y D, Long J D, He X Z, Zhang X D, Jiang X G, Ma C F, Zhao L C, Yang X L, Zhang Z, Wang Y, Pang J, Li H, Li W F, Zhou F X, Shi J S, Zhang K Z, Li J, Zhang L W, Deng J J 2014 Chin. Phys. C 38 087003

    [15]

    Teng J, Hong W, He S K, Deng Z G, Zhu B, Zhang T K, Yu M H, Qian F, Zhang B, Qi W, Zhang Z M, Bi B, Shan L Q, Zhang F Q, Yang L, Lu F, Zhang F, Li J, Chen T, Wu Y C, Cui B, Zhou W M, Cao L F, Gu Y Q 2017 High. Pow. Las. Part. Beam. 29 092001 (in Chinese)[滕建, 洪伟, 贺书凯, 邓志刚, 朱斌, 张天奎, 于明海, 钱凤, 张博, 齐伟, 张智猛, 毕碧, 单连强, 张发强, 杨雷, 卢峰, 张锋, 李晋, 陈韬, 吴玉迟, 崔波, 周维民, 曹磊峰, 谷渝秋 2017 强激光与粒子束 29 092001]

    [16]

    Mottershead C T, Zumbro J D 1997 Particle Accelerator Conference Vancouver, May 16, 1997 p1397

    [17]

    Hanson K M, Bradbury J N, Koeppe R A, Macek R J, Machen D R, Morgado R, Paciotti M A, Sandford S A, Steward V W 1982 Phys. Med. Biol. 27 25

    [18]

    Schulte R W, Bashkirov V, Loss K M C, Li T F, Wroe A J, Evseev I, Williams D C, Satogata T 2005 Med. Phys. 32 1035

    [19]

    Groom D 1993 PDG 06

    [20]

    Bohr N 1948 Freshwater Biol. 44 213

    [21]

    Agostinelli S, Allison J, Amako K A, et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 506 250

    [22]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270

  • [1]

    Burtsev V V, Lebedev A I, Mikhailov A L, et al. 2011 Combust. Explo. Shock Waves 47 627

    [2]

    Morris C L, Ables E, Alrick K R, et al. 2011 J. Appl. Phys. 109 104905

    [3]

    Antipov Y M, Afonin A G, Gusev I A, et al. 2013 At. Energy 114 359

    [4]

    Antipov Y M, Afonin A G, Vasilevskii A V, et al. 2010 Instrum. Exp. Tech. 53 319

    [5]

    Varentsov D, Antonov O, Bakhmutova A, et al. 2016 Rev. Sci. Instrum. 87 023303

    [6]

    Teng J, Hong W, Zhao Z Q, Wu S C, Qin X Z, He Y L, Gu Y Q, Ding Y K 2009 Acta Phys. Sin. 58 1635 (in Chinese)[滕建, 洪伟, 赵宗清, 巫顺超, 秦孝尊, 何颖玲, 谷渝秋, 丁永坤 2009 物理学报 58 1635]

    [7]

    Teng J, Zhao Z Q, Zhu B, et al. 2011 Chin. Phys. Lett. 28 035203

    [8]

    Xu H B, Zheng N 2015 Chin. Phys. C 39 078201

    [9]

    Wu X J, Wang X F, Chen X H 2016 Chin. Phys. Lett. 33 065201

    [10]

    Yang S Q, Zhou W M, Wang S M, Jiao J L, Zhang Z M, Cao L F, Gu Y Q, Zhang B H 2017 Acta Phys. Sin. 66 184101 (in Chinese)[杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉 2017 物理学报 66 184101]

    [11]

    Yang J J, Zhen X, Wei S M, Lv Y L, Wang F, Zhang Y W, Wen L P, Liu J Y, Cai H R, Ge T, Zhang S P, Cao L, Zhang T J, Li Z G 2016 CYC 2016 Proceedings of the 21st International Conference on Cyclotrons and their Applications Zurich, September 11-16, 2016 p401

    [12]

    Merrill F E 2015 Rev. Accl. Sci. Tech. 8 165

    [13]

    Sheng L, Zhao Y, Yang G, et al. 2014 Laser Part. Beams 32 651

    [14]

    Wei T, Yang G J, Li Y D, Long J D, He X Z, Zhang X D, Jiang X G, Ma C F, Zhao L C, Yang X L, Zhang Z, Wang Y, Pang J, Li H, Li W F, Zhou F X, Shi J S, Zhang K Z, Li J, Zhang L W, Deng J J 2014 Chin. Phys. C 38 087003

    [15]

    Teng J, Hong W, He S K, Deng Z G, Zhu B, Zhang T K, Yu M H, Qian F, Zhang B, Qi W, Zhang Z M, Bi B, Shan L Q, Zhang F Q, Yang L, Lu F, Zhang F, Li J, Chen T, Wu Y C, Cui B, Zhou W M, Cao L F, Gu Y Q 2017 High. Pow. Las. Part. Beam. 29 092001 (in Chinese)[滕建, 洪伟, 贺书凯, 邓志刚, 朱斌, 张天奎, 于明海, 钱凤, 张博, 齐伟, 张智猛, 毕碧, 单连强, 张发强, 杨雷, 卢峰, 张锋, 李晋, 陈韬, 吴玉迟, 崔波, 周维民, 曹磊峰, 谷渝秋 2017 强激光与粒子束 29 092001]

    [16]

    Mottershead C T, Zumbro J D 1997 Particle Accelerator Conference Vancouver, May 16, 1997 p1397

    [17]

    Hanson K M, Bradbury J N, Koeppe R A, Macek R J, Machen D R, Morgado R, Paciotti M A, Sandford S A, Steward V W 1982 Phys. Med. Biol. 27 25

    [18]

    Schulte R W, Bashkirov V, Loss K M C, Li T F, Wroe A J, Evseev I, Williams D C, Satogata T 2005 Med. Phys. 32 1035

    [19]

    Groom D 1993 PDG 06

    [20]

    Bohr N 1948 Freshwater Biol. 44 213

    [21]

    Agostinelli S, Allison J, Amako K A, et al. 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 506 250

    [22]

    Allison J, Amako K, Apostolakis J, et al. 2006 IEEE Trans. Nucl. Sci. 53 270

  • [1] Xun Zhi-Peng, Hao Da-Peng. Monte Carlo simulation of bond percolation on square lattice with complex neighborhoods. Acta Physica Sinica, 2022, 71(6): 066401. doi: 10.7498/aps.71.20211757
    [2] Wang Li-Min, Duan Bing-Huang, Xu Xian-Guo, Li Hao, Chen Zhi-Jun, Yang Kun-Jie, Zhang Shuo. Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method. Acta Physica Sinica, 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [3] Zhang Hong, Guo Hong-Xia, Pan Xiao-Yu, Lei Zhi-Feng, Zhang Feng-Qi, Gu Zhao-Qiao, Liu Yi-Tian, Ju An-An, Ouyang Xiao-Ping. Transport process and energy loss of heavy ions in silicon carbide. Acta Physica Sinica, 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [4] Li Ying-Han, An Zhu, Zhu Jing-Jun, Li Ling. Characteristic X-ray yields and cross sections of thick targets of Al, Ti, Zr, W and Au induced by keV-electron impact. Acta Physica Sinica, 2020, 69(13): 133401. doi: 10.7498/aps.69.20200264
    [5] Chen Feng, Xu Hai-Bo, Zheng Na, Jia Qing-Gang, She Ruo-Gu, Li Xing-E. Theoretical study of angle-cut collimator based design in high-energy proton radiography. Acta Physica Sinica, 2020, 69(3): 032901. doi: 10.7498/aps.69.20191691
    [6] Tian Zi-Ning, Ouyang Xiao-Ping, Chen Wei, Wang Xue-Mei, Deng Ning, Liu Wen-Biao, Tian Yan-Jie. Source boundary parameter of Monte Carlo inversion technology based on virtual source principle. Acta Physica Sinica, 2019, 68(23): 232901. doi: 10.7498/aps.68.20191095
    [7] Chen Yan-Hong, Cheng Rui, Zhang Min, Zhou Xian-Ming, Zhao Yong-Tao, Wang Yu-Yu, Lei Yu, Ma Peng-Peng, Wang Zhao, Ren Jie-Ru, Ma Xin-Wen, Xiao Guo-Qing. Experimental investigation on diagnosing effective atomic density in gas-type target by using proton energy loss. Acta Physica Sinica, 2018, 67(4): 044101. doi: 10.7498/aps.67.20172028
    [8] Li Wen-Fang, Du Jin-Jin, Wen Rui-Juan, Yang Peng-Fei, Li Gang, Zhang Tian-Cai. Single-atom transfer in a strongly coupled cavity quantum electrodynamics: experiment and Monte Carlo simulation. Acta Physica Sinica, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [9] Zhang Fa-Qiang, Qi Jian-Min, Zhang Jian-Hua, Li Lin-Bo, Chen Ding-Yang, Xie Hong-Wei, Yang Jian-Lun, Chen Jin-Chuan. A method of fast-neutron imaging with energy threshold based on an imaging plate. Acta Physica Sinica, 2014, 63(12): 128701. doi: 10.7498/aps.63.128701
    [10] Hua Yu-Chao, Dong Yuan, Cao Bing-Yang. Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm. Acta Physica Sinica, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [11] Lan Mu, Xiang Gang, Gu Gang-Xu, Zhang Xi. A Monte Carlo simulation study on growth mechanism of horizontal nanowires on crystal surface. Acta Physica Sinica, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [12] Fan Xiao-Hui, Zhao Xing-Yu, Wang Li-Na, Zhang Li-Li, Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng. Monte Carlo simulations of the relaxation dynamics of the spatial relaxation modes in the molecule-string model. Acta Physica Sinica, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [13] Chen Shan, Wu Qing-Yun, Chen Zhi-Gao, Xu Gui-Gui, Huang Zhi-Gao. Ferromagnetism of C doped ZnO: first-principles calculation and Monte Carlo simulation. Acta Physica Sinica, 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [14] Xiong Kai-Guo, Feng Guo-Lin, Hu Jing-Guo, Wan Shi-Quan, Yang Jie. Monte Carlo simulation of the record-breaking high temperature events of climate changes. Acta Physica Sinica, 2009, 58(4): 2843-2852. doi: 10.7498/aps.58.2843
    [15] Gao Fei, Ryoko Yamada, Mitsuo Watanabe, Liu Hua-Feng. Use of Monte Carlo simulations for the scatter events analysis of PET scanners. Acta Physica Sinica, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [16] Xu Lan-Qing, Li Hui, Xiao Zheng-Ying. Discussion on backscattered photon numbers and their scattering events in a turbid media. Acta Physica Sinica, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [17] Yang Huan, Gao Kuang, Zhang Sui-Meng. A theoretical study on (e, 2e) process for helium in large energy loss and close to minimum momentum transfer geometry. Acta Physica Sinica, 2007, 56(9): 5202-5208. doi: 10.7498/aps.56.5202
    [18] He Qing-Fang, Xu Zheng, Liu De-Ang, Xu Xu-Rong. Monte Carlo simulation of the effect of impact ionization in thin-film electroluminescent devices. Acta Physica Sinica, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [19] Wang Zhi-Jun, Dong Li-Fang, Shang Yong. Monte Carlo simulation of optical emission spectra in electron assisted chemical vapor deposition of diamond. Acta Physica Sinica, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [20] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
Metrics
  • Abstract views:  4637
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  28 May 2018
  • Accepted Date:  23 July 2018
  • Published Online:  20 October 2019

/

返回文章
返回