Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Single crystal growth and characterization of the 112-type iron-pnictide EuFeAs2

Yu Jia Liu Tong Zhao Kang Pan Bo-Jin Mu Qing-Ge Ruan Bin-Bin Ren Zhi-An

Citation:

Single crystal growth and characterization of the 112-type iron-pnictide EuFeAs2

Yu Jia, Liu Tong, Zhao Kang, Pan Bo-Jin, Mu Qing-Ge, Ruan Bin-Bin, Ren Zhi-An
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The 112-type (Ca, RE)FeAs2 (RE=rare earth) superconductors are very special among the iron-based superconductors for their particular crystal structures with arsenic chain configuration and attractive electronic phase diagram with the coexistence of superconductivity and antiferromagnetism upon carrier doping, while the chemical phases are absent for the low doping level or undoped parent compound. Here we report the single crystal growth method and physical characterizations for the newly discovered Eu 112 type parent compound EuFeAs2. The single crystal of EuFeAs2 is grown by high temperature solution method through using CsCl as the flux under the constant temperature of 800℃ with the molar ratio of the starting materials Eu:Fe:As:CsCl=1:1:4:18. The as-grown crystal is shinyplatelike piece with a typical size of 1 mm1 mm0.2 mm, and quite stable in air. The chemical composition of EuFeAs2 crystal is confirmed by energy-dispersive X-ray spectroscopy. The single crystal X-ray diffraction analysis at room temperature indicates that EuFeAs2 crystallizes into an orthorhombic crystal structure with the space group Imm2 (No. 44), and the refined lattice parameters are a=21.285(9) , b=3.9082(10) , c=3.9752(9) , which are different from those of the Ca 112 compound, but similar to those of unique zigzag As-As chain configuration presented in the layered crystal structure. Electrical resistivity measurements show three anomalies near 110 K, 98 K, and 46 K. The former two anomalies with relatively high temperature imply that the structural and antiferromagnetic transitions are related to Fe2+ sublattice, which is similar to other iron-based parent compounds. The low temperature anomaly at 46 K is attributed to the antiferromagnetic transition of Eu2+ sublattice, which is also confirmed by the corresponding transition observed in the direct current magnetic susceptibility measurement. The magnetic susceptibility of EuFeAs2 exhibits obvious anisotropy blow 46 K when the magnetic field is parallel or perpendicular to the bc plane, while the exact orientation of the Eu2+ moment needs further studying. The discovery of EuFeAs2 provides a new platform for further studying the unique crystal structure and electronic state phase diagrams in the 112-type iron-based superconducting family, and may shed new light on the correlations between superconductivity and magnetism.
      Corresponding author: Ren Zhi-An, renzhian@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2016YFA0300301), the National Natural Science Foundation of China (Grant Nos. 11474339, 11774402), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.
    [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [2]

    Chen X, Dai P, Feng D, Xiang T, Zhang F C 2014 Natl. Sci. Rev. 1 371

    [3]

    Chen H, Ren Y, Qiu Y, Bao W, Liu R H, Wu G, Wu T, Xie Y L, Wang X F, Huang Q, Chen X H 2009 EPL 85 17006

    [4]

    Luetkens H, Klauss H H, Kraken M, Litterst F J, Dellmann T, Klingeler R, Hess C, Khasanov R, Amato A, Baines C, Kosmala M, Schumann O J, Braden M, Hamann-Borrero J, Leps N, Kondrat A, Behr G, Werner J, Buchner B 2009 Nat. Mater. 8 305

    [5]

    Zhao J, Huang Q, de la Cruz C, Li S, Lynn J W, Chen Y, Green M A, Chen G F, Li G, Li Z, Luo J L, Wang N L, Dai P 2008 Nat. Mater. 7 953

    [6]

    Yakita H, Ogino H, Okada T, Yamamoto A, Kishio K, Tohei T, Ikuhara Y, Gotoh Y, Fujihisa H, Kataoka K, Eisaki H, Shimoyama J 2014 J. Am. Chem. Soc. 136 846

    [7]

    Kawasaki S, Mabuchi T, Maeda S, Adachi T, Mizukami T, Kudo K, Nohara M, Zheng G Q 2015 Phys. Rev. B 92 180508

    [8]

    Li M Y, Liu Z T, Zhou W, Yang H F, Shen D W, Li W, Jiang J, Niu X H, Xie B P, Sun Y, Fan C C, Yao Q, Liu J S, Shi Z X, Xie X M 2015 Phys. Rev. B 91 045112

    [9]

    Rutzinger D, Bartsch C, Doerr M, Rosner H, Neu V, Doert T, Ruck M 2010 J. Solid State Chem. 183 510

    [10]

    Ni N, Allred J M, Chan B C, Cava R J 2011 Proc. Natl. Acad. Sci. U. S. A. 108 E1019

    [11]

    Yu J, Liu T, Pan B J, Ruan B B, Wang X C, Mu Q G, Zhao K, Chen G F, Ren Z A 2017 Sci. Bull. 62 218

    [12]

    Yakita H, Ogino H, Sala A, Okada T, Yamamoto A, Kishio K, Iyo A, Eisaki H, Shimoyama J 2015 Physica C 518 14

    [13]

    Sun L, Guo J, Chen G, Chen X, Dong X, Lu W, Zhang C, Jiang Z, Zou Y, Zhang S, Huang Y, Wu Q, Dai X, Li Y, Liu J, Zhao Z 2010 Phys. Rev. B 82 134509

    [14]

    Matsubayashi K, Munakata K, Isobe M, Katayama N, Ohgushi K, Ueda Y, Kawamura N, Mizumaki M, Ishimatsu N, Hedo M, Umehara I, Uwatoko Y 2011 Phys. Rev. B 84 024502

    [15]

    Jiang S, Liu C, Cao H B, Birol T, Allred J M, Tian W, Liu L, Cho K, Krogstad M J, Ma J, Taddei K M, Tanatar M A, Hoesch M, Prozorov R, Rosenkranz S, Uemura Y J, Kotliar G, Ni N 2016 Phys. Rev. B 93 054522

    [16]

    Koo J, Park J, Kook Cho S, Duk Kim K, Park S Y, Hee Jeong Y, Jun Park Y, Yeong Koo T, Hong K P, Lee C H, Kim J Y, Cho B K, Bong Lee K, Kim H J 2010 J. Phys. Soc. Jpn. 79 114708

    [17]

    Ren Z, Zhu Z, Jiang S, Xu X, Tao Q, Wang C, Feng C, Cao G, Xu Z A 2008 Phys. Rev. B 78 052501

    [18]

    Feng C, Ren Z, Xu S, Jiang S, Xu Z A, Cao G, Nowik I, Felner I, Matsubayashi K, Uwatoko Y 2010 Phys. Rev. B 82 094426

    [19]

    Ballinger J, Wenger L E, Vohra Y K, Sefat A S 2012 J. Appl. Phys. 111 07E106

    [20]

    Sengupta K, Alzamora M, Fontes M B, Sampathkumaran E V, Ramos S M, Hering E N, Saitovitch E M B, Paulose P L, Ranganathan R, Doert T, Jemetio J P F 2012 J. Phys. Condens. Matter 24 096004

    [21]

    Guguchia Z, Bosma S, Weyeneth S, Shengelaya A, Puzniak R, Bukowski Z, Karpinski J, Keller H 2011 Phys. Rev. B 84 144506

    [22]

    Xiao Y, Su Y, Meven M, Mittal R, Kumar C M N, Chatterji T, Price S, Persson J, Kumar N, Dhar S K, Thamizhavel A, Brueckel T 2009 Phys. Rev. B 80 174424

    [23]

    McGuire M A, Christianson A D, Sefat A S, Sales B C, Lumsden M D, Jin R, Payzant E A, Mandrus D, Luan Y, Keppens V, Varadarajan V, Brill J W, Hermann R P, Sougrati M T, Grandjean F, Long G J 2008 Phys. Rev. B 78 094517

  • [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [2]

    Chen X, Dai P, Feng D, Xiang T, Zhang F C 2014 Natl. Sci. Rev. 1 371

    [3]

    Chen H, Ren Y, Qiu Y, Bao W, Liu R H, Wu G, Wu T, Xie Y L, Wang X F, Huang Q, Chen X H 2009 EPL 85 17006

    [4]

    Luetkens H, Klauss H H, Kraken M, Litterst F J, Dellmann T, Klingeler R, Hess C, Khasanov R, Amato A, Baines C, Kosmala M, Schumann O J, Braden M, Hamann-Borrero J, Leps N, Kondrat A, Behr G, Werner J, Buchner B 2009 Nat. Mater. 8 305

    [5]

    Zhao J, Huang Q, de la Cruz C, Li S, Lynn J W, Chen Y, Green M A, Chen G F, Li G, Li Z, Luo J L, Wang N L, Dai P 2008 Nat. Mater. 7 953

    [6]

    Yakita H, Ogino H, Okada T, Yamamoto A, Kishio K, Tohei T, Ikuhara Y, Gotoh Y, Fujihisa H, Kataoka K, Eisaki H, Shimoyama J 2014 J. Am. Chem. Soc. 136 846

    [7]

    Kawasaki S, Mabuchi T, Maeda S, Adachi T, Mizukami T, Kudo K, Nohara M, Zheng G Q 2015 Phys. Rev. B 92 180508

    [8]

    Li M Y, Liu Z T, Zhou W, Yang H F, Shen D W, Li W, Jiang J, Niu X H, Xie B P, Sun Y, Fan C C, Yao Q, Liu J S, Shi Z X, Xie X M 2015 Phys. Rev. B 91 045112

    [9]

    Rutzinger D, Bartsch C, Doerr M, Rosner H, Neu V, Doert T, Ruck M 2010 J. Solid State Chem. 183 510

    [10]

    Ni N, Allred J M, Chan B C, Cava R J 2011 Proc. Natl. Acad. Sci. U. S. A. 108 E1019

    [11]

    Yu J, Liu T, Pan B J, Ruan B B, Wang X C, Mu Q G, Zhao K, Chen G F, Ren Z A 2017 Sci. Bull. 62 218

    [12]

    Yakita H, Ogino H, Sala A, Okada T, Yamamoto A, Kishio K, Iyo A, Eisaki H, Shimoyama J 2015 Physica C 518 14

    [13]

    Sun L, Guo J, Chen G, Chen X, Dong X, Lu W, Zhang C, Jiang Z, Zou Y, Zhang S, Huang Y, Wu Q, Dai X, Li Y, Liu J, Zhao Z 2010 Phys. Rev. B 82 134509

    [14]

    Matsubayashi K, Munakata K, Isobe M, Katayama N, Ohgushi K, Ueda Y, Kawamura N, Mizumaki M, Ishimatsu N, Hedo M, Umehara I, Uwatoko Y 2011 Phys. Rev. B 84 024502

    [15]

    Jiang S, Liu C, Cao H B, Birol T, Allred J M, Tian W, Liu L, Cho K, Krogstad M J, Ma J, Taddei K M, Tanatar M A, Hoesch M, Prozorov R, Rosenkranz S, Uemura Y J, Kotliar G, Ni N 2016 Phys. Rev. B 93 054522

    [16]

    Koo J, Park J, Kook Cho S, Duk Kim K, Park S Y, Hee Jeong Y, Jun Park Y, Yeong Koo T, Hong K P, Lee C H, Kim J Y, Cho B K, Bong Lee K, Kim H J 2010 J. Phys. Soc. Jpn. 79 114708

    [17]

    Ren Z, Zhu Z, Jiang S, Xu X, Tao Q, Wang C, Feng C, Cao G, Xu Z A 2008 Phys. Rev. B 78 052501

    [18]

    Feng C, Ren Z, Xu S, Jiang S, Xu Z A, Cao G, Nowik I, Felner I, Matsubayashi K, Uwatoko Y 2010 Phys. Rev. B 82 094426

    [19]

    Ballinger J, Wenger L E, Vohra Y K, Sefat A S 2012 J. Appl. Phys. 111 07E106

    [20]

    Sengupta K, Alzamora M, Fontes M B, Sampathkumaran E V, Ramos S M, Hering E N, Saitovitch E M B, Paulose P L, Ranganathan R, Doert T, Jemetio J P F 2012 J. Phys. Condens. Matter 24 096004

    [21]

    Guguchia Z, Bosma S, Weyeneth S, Shengelaya A, Puzniak R, Bukowski Z, Karpinski J, Keller H 2011 Phys. Rev. B 84 144506

    [22]

    Xiao Y, Su Y, Meven M, Mittal R, Kumar C M N, Chatterji T, Price S, Persson J, Kumar N, Dhar S K, Thamizhavel A, Brueckel T 2009 Phys. Rev. B 80 174424

    [23]

    McGuire M A, Christianson A D, Sefat A S, Sales B C, Lumsden M D, Jin R, Payzant E A, Mandrus D, Luan Y, Keppens V, Varadarajan V, Brill J W, Hermann R P, Sougrati M T, Grandjean F, Long G J 2008 Phys. Rev. B 78 094517

  • [1] Liu Rong-Zhao, Fan Zhen-Jun, Wang Hao-Cheng, Ning Hao-Ming, Mi Zhen-Yu, Liu Guang-Yao, Song Xiao-Hui. Abnormal magnetic phenomenon at low temperature in Zn doped $ \left[{(\mathbf{C}\mathbf{H}}_{3}{)}_{2}\mathbf{N}{\mathbf{H}}_{2}\right]{\mathbf{C}\mathbf{o}}_{\mathit{x}}{\mathbf{Z}\mathbf{n}}_{1-\mathit{x}}{\left[\mathbf{H}\mathbf{C}\mathbf{O}\mathbf{O}\right]}_{3} $ frameworks. Acta Physica Sinica, 2023, 72(3): 030201. doi: 10.7498/aps.72.20221761
    [2] Qiu Hang-Qiang, Xie Xiao-Meng, Liu Yi, Li Yu-Ke, Xu Xiao-Feng, Jiao Wen-He. Crystal growth and electronic transport property of ternary Pd-based tellurides. Acta Physica Sinica, 2022, 71(22): 227401. doi: 10.7498/aps.71.20221034
    [3] Liu Ze-Tao, Chen Bo, Ling Wei-Dong, Bao Nan-Yun, Kang Dong-Dong, Dai Jia-Yu. Phase transitions of palladium under dynamic shock compression. Acta Physica Sinica, 2022, 71(3): 037102. doi: 10.7498/aps.71.20211511
    [4] Phase Transitions of Palladium under Dynamic Shock Compression. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211511
    [5] Dong Xiao-Li, Jin Kui, Yuan Jie, Zhou Fang, Zhang Guang-Ming, Zhao Zhong-Xian. New progress of FeSe-based superconducting single crystals and films: Spin nematicity, electronic phase separation, and high critical parameters. Acta Physica Sinica, 2018, 67(20): 207410. doi: 10.7498/aps.67.20181638
    [6] Yi Chang-Jiang, Wang Le, Feng Zi-Li, Yang Meng, Yan Da-Yu, Wang Cui-Xiang, Shi You-Guo. Research progress of single crystal growth for topological semimetals. Acta Physica Sinica, 2018, 67(12): 128102. doi: 10.7498/aps.67.20180796
    [7] Mu Gang, Ma Yong-Hui. Single crystal growth and physical property study of 1111-type Fe-based superconducting system CaFeAsF. Acta Physica Sinica, 2018, 67(17): 177401. doi: 10.7498/aps.67.20181371
    [8] Li De-Ming, Fang Song-Ke, Tong Jin-Shan, Su Jian, Zhang Na, Song Gui-Lin. Effects of Ca2+ doping on dielectric, ferromagnetic properties and magnetic phase transition of SmFeO3 ceramics. Acta Physica Sinica, 2018, 67(6): 067501. doi: 10.7498/aps.67.20172433
    [9] Pu Chun-Ying, Wang Li, Lü Lin-Xia, Yu Rong-Mei, He Chao-Zheng, Lu Zhi-Wen, Zhou Da-Wei. Pressure-induced structural transition and thermodynamic properties of NbSi2 from first-principles calculations. Acta Physica Sinica, 2015, 64(8): 087103. doi: 10.7498/aps.64.087103
    [10] Hu Yong-Jin, Wu Yun-Pei, Liu Guo-Ying, Luo Shi-Jun, He Kai-Hua. Structural phase transition, electronic structures and optical properties of ZnTe. Acta Physica Sinica, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [11] Wang Jin-Rong, Zhu Jun, Hao Yan-Jun, Ji Guang-Fu, Xiang Gang, Zou Yang-Chun. First-principles study of the structural, elastic and electronic properties of RhB under high pressure. Acta Physica Sinica, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [12] Gu Jian-Jun, Sun Hui-Yuan, Liu Li-Hu, Qi Yun-Kai, Xu Qin. Influence of structural phase transition on Ferromagnetism in Fe-doped TiO2 thin films. Acta Physica Sinica, 2012, 61(1): 017501. doi: 10.7498/aps.61.017501
    [13] Zhao Jing-Jing, Shu Di, Qi Xin, Liu En-Ke, Zhu Wei, Feng Lin, Wang Wen-Hong, Wu Guang-Heng. Structural phase transition and magnetic properties of Co50Fe50-xSix alloys. Acta Physica Sinica, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.1
    [14] Ma Yu-Bin. Ferromagnetic-antiferromagnetic transition and resistivity variation of oxygen-deficient La0.5Ca0.5MnO3 samples. Acta Physica Sinica, 2009, 58(7): 4976-4979. doi: 10.7498/aps.58.4976
    [15] Li Xiao-Bing, Zhao Xiang-Yong, Wang Yao-Jin, Wang Fei-Fei, Chen Chao, Luo Hao-Su. Study of the dipole rotation path of BaTiO3 single crystal based on dielectric properties in structure phase transition. Acta Physica Sinica, 2009, 58(6): 4225-4229. doi: 10.7498/aps.58.4225
    [16] Cui Yong-Feng, Yuan Zhi-Hao. Structural phase transformation and optical absorption of capped TiO2 nanoparticles. Acta Physica Sinica, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [17] Kong Ling-Gang, Kang Jin-Feng, Wang Yi, Liu Li-Feng, Liu Xiao-Yan, Zhang Xing, Han Ru-Qi. Room-temperature ferromagnetism in bulk CoxTi1-xO2-δ induced by the phase transformation in the hydrogenation sintering process. Acta Physica Sinica, 2006, 55(3): 1453-1457. doi: 10.7498/aps.55.1453
    [18] Cheng Jin-Guang, Sui Yu, Qian Zheng-Nan, Liu Zhi-Guo, Huang Xi-Qiang, Miao Ji-Peng, Lü Zhe, Wang Xian-Jie, Su Wen-Hui. Specific heat of single-crystal NdMnO3. Acta Physica Sinica, 2005, 54(9): 4359-4364. doi: 10.7498/aps.54.4359
    [19] Sun Li-Tao, Gong Jin-Long, Zhu Zhi-Yuan, Zhu De-Zhang, He Sui-Xia, Wang Zhen-Xia. Plasma-induced transformation of carbon nanotubes to nanocrystalline diamond. Acta Physica Sinica, 2004, 53(10): 3467-3471. doi: 10.7498/aps.53.3467
    [20] Hu Lin-Hua, Dai Song-Yuan, Wang Kong-Jia. Structural transformation of nanocrystalline titania grown by sol-gel technique and the growth kinetics of crystallites. Acta Physica Sinica, 2003, 52(9): 2135-2139. doi: 10.7498/aps.52.2135
Metrics
  • Abstract views:  6093
  • PDF Downloads:  334
  • Cited By: 0
Publishing process
  • Received Date:  20 July 2018
  • Accepted Date:  10 August 2018
  • Published Online:  20 October 2019

/

返回文章
返回