Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal nonequilibrium detonation model of solid explosive

Li Shi-Yao Yu Ming

Citation:

Thermal nonequilibrium detonation model of solid explosive

Li Shi-Yao, Yu Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A thermal nonequilibrium reactive flow model is proposed to deal with the detonation dynamics of solid explosive. For the detonation in solid explosive, the solid-phase reactant and gas-phase product in the chemically reactive mixture zone do not have molecular collisions as in the case of gaseous detonation, so the solid-phase reactant and gas-phase product can arrive at a mechanical equilibrium but cannot reach a thermal equilibrium when the detonation happens. The main properties of the present detonation model are as follows. The Euler equations for chemical mixture and the mass conservation equation for solid-phase reactant are used to express the chemically reactive flows in solid explosive detonation as a traditional way, and an additional set of governing equations of the species physical variables for solidphase reactant is derived to give an expression to the thermal nonequilibrium between the solid-phase reactant and gas-phase product. The chemical mixture within a control volume is defined as a collection of species which possess distinct internal energy or temperature, and the same pressure and velocity. For the explosive detonation, the species include solid-phase reactant and gas-phase product. Based on the mixing rule that every species can preserve the conservation of its internal energy in the reactive mixture zone, the evolution equation of internal energy for solid-phase reactant may be obtained, meanwhile, based on the property of mechanical equilibrium in the reactive mixture zone, the total volume fraction is equal to one, and the equation of state of every species, the evolution equation of volume fraction for solid-phase reactant and the evolution equation of pressure for chemical mixture can be derived. Thus, the theoretical model of solid explosive detonation includes the conservation equation of mass, momentum, total energy and the evolution equation of pressure for the chemical mixture, and the conservation equation of mass and the evolution equation of internal energy and volume fraction for the solid-phase reactant. The partially differential equations of the detonation model are numerically solved by a finite volume scheme with two-order spatiotemporal precision, through using a wave propagation algorithm by means of Strang splitting operator. The validation of the proposed detonation model is checked by the propagation of planar one-dimensional detonation, the propagation of cylindrically divergent detonation and the interaction between two cylindrically divergent detonations, and the typical examples demonstrate that the proposed theoretical model of solid explosive detonation is reasonable.
      Corresponding author: Yu Ming, yu_ming@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11772066, 11272064), the Science Challenge Project, China (Grant No. TZ2016002), and the Science Foundation of Computational Physics Laboratory, China (Grant No. 9140C690101150C69300).
    [1]

    Chapman D L 1899 Philos. Mag. 47 90

    [2]

    Jouguet E J 1905 de Math. Pures et Appl. 1 347

    [3]

    von Neumann J 1956 Theory of Detonation Waves in John von Neumann's Collected Works (New York: Macmilann) pp18-28

    [4]

    Zel'dovich Y B, Kompaneets A S 1960 Theory of Detonation (New York: Academic) pp234-245

    [5]

    Davis W C, Fickett W 1979 Detonation (Berkeley: University of California Press) pp23-29

    [6]

    Zhang F 2012 Detonation Dynamics, Shock Wave Science and Technology Reference Library (Vol. 6) (Berlin, Heidelberg: Springer) pp33-100

    [7]

    Lee J H S 2008 The Detonation Phenomenon (Cambridge: Cambridge University Press) pp43-48

    [8]

    Ershov A P, Satonkina N P, Ivanov G M 2006 Proceedings of the 13rd International Detonation Symposium Norfolk, USA, July 23-28, 2006 p79

    [9]

    Nichols Ⅲ A L 2005 Shock Compression of Condensed Matter-2005, AIP Conference Proceedings Baltimore, USA, July 31-August 5, 2005 p03113-1

    [10]

    Kay J J 2015 Shock Compression of Condensed Matter-2015, AIP Conference Proceedings Baltimore, USA, July 23-29, 2015 p03002-1

    [11]

    Harier D 2015 Modeling ‘Hot-Spot’ Contributions in Shocked High Explosives at the Mesoscale (Los Alamos: Los Alamos National Lab.) LA-UR-15-26389

    [12]

    Kapila A K, Menikoff R, Bdzil J B, Son S F, Stewart D S 2001 Phys. Fluids 13 3002

    [13]

    Petitpas F, Richard Saurel, Franquet E, Chinnayya A 2009 Shock Waves 19 377

    [14]

    Conley P A, Benson D J 1998 Proceedings of the 11th International Detonation Symposium Snowmass, CO, USA, July 15-20, 1998 p768

    [15]

    Baer M R, Kipp M E, van Swol F 1998 Proceedings of the 11th International Detonation Symposium Snowmass, CO, USA, July 15-20, 1998 p788

    [16]

    Nichols Ⅲ A L 2010 Proceedings of the 14th International Detonation Symposium Coeur d'Alane, USA, April 11-16, 2010 p1549

    [17]

    Tarasov M D, Karpenko I I, Sudovtsov V A, Tolshmyakov A I 2007 Combust. Explo. Shock Waves 43 465

    [18]

    Gerard B, Fabien P, Richard S 2010 Proceedings of the 14th International Detonation Symposium Coeur d'Alene Idaho, USA, April 11-16, 2010 p509

    [19]

    Tarver C M 2005 Shock Compression of Condensed Matter-2005, AIP Conference Proceedings Baltimore, USA, July 31-August 5, 2005 p03113-1

    [20]

    Ton V T 1996 J. Comp. Phys. 128 237

    [21]

    Schoch S, Nordin-Bates K, Nikiforakis N 2013 J. Comp. Phys. 252 163

    [22]

    Strang G 1968 SIAM J. Num. Anal. 5 506

    [23]

    Leveque R J 1997 J. Comp. Phys. 131 327

    [24]

    Zhong X L 1996 J. Comp. Phys. 128 19

    [25]

    Lee E F, Tarver C M 1980 Phys. Fluids 23 2362

    [26]

    Ralph M 2015 JWL Equation of State (Los Alamos: Los Alamos National Laboratory) LA-UR-15-29536

    [27]

    Mader C L 1998 Numerical Modeling of Explosives and Propellants (2nd Ed.) New York: CRC Press) pp271-272

  • [1]

    Chapman D L 1899 Philos. Mag. 47 90

    [2]

    Jouguet E J 1905 de Math. Pures et Appl. 1 347

    [3]

    von Neumann J 1956 Theory of Detonation Waves in John von Neumann's Collected Works (New York: Macmilann) pp18-28

    [4]

    Zel'dovich Y B, Kompaneets A S 1960 Theory of Detonation (New York: Academic) pp234-245

    [5]

    Davis W C, Fickett W 1979 Detonation (Berkeley: University of California Press) pp23-29

    [6]

    Zhang F 2012 Detonation Dynamics, Shock Wave Science and Technology Reference Library (Vol. 6) (Berlin, Heidelberg: Springer) pp33-100

    [7]

    Lee J H S 2008 The Detonation Phenomenon (Cambridge: Cambridge University Press) pp43-48

    [8]

    Ershov A P, Satonkina N P, Ivanov G M 2006 Proceedings of the 13rd International Detonation Symposium Norfolk, USA, July 23-28, 2006 p79

    [9]

    Nichols Ⅲ A L 2005 Shock Compression of Condensed Matter-2005, AIP Conference Proceedings Baltimore, USA, July 31-August 5, 2005 p03113-1

    [10]

    Kay J J 2015 Shock Compression of Condensed Matter-2015, AIP Conference Proceedings Baltimore, USA, July 23-29, 2015 p03002-1

    [11]

    Harier D 2015 Modeling ‘Hot-Spot’ Contributions in Shocked High Explosives at the Mesoscale (Los Alamos: Los Alamos National Lab.) LA-UR-15-26389

    [12]

    Kapila A K, Menikoff R, Bdzil J B, Son S F, Stewart D S 2001 Phys. Fluids 13 3002

    [13]

    Petitpas F, Richard Saurel, Franquet E, Chinnayya A 2009 Shock Waves 19 377

    [14]

    Conley P A, Benson D J 1998 Proceedings of the 11th International Detonation Symposium Snowmass, CO, USA, July 15-20, 1998 p768

    [15]

    Baer M R, Kipp M E, van Swol F 1998 Proceedings of the 11th International Detonation Symposium Snowmass, CO, USA, July 15-20, 1998 p788

    [16]

    Nichols Ⅲ A L 2010 Proceedings of the 14th International Detonation Symposium Coeur d'Alane, USA, April 11-16, 2010 p1549

    [17]

    Tarasov M D, Karpenko I I, Sudovtsov V A, Tolshmyakov A I 2007 Combust. Explo. Shock Waves 43 465

    [18]

    Gerard B, Fabien P, Richard S 2010 Proceedings of the 14th International Detonation Symposium Coeur d'Alene Idaho, USA, April 11-16, 2010 p509

    [19]

    Tarver C M 2005 Shock Compression of Condensed Matter-2005, AIP Conference Proceedings Baltimore, USA, July 31-August 5, 2005 p03113-1

    [20]

    Ton V T 1996 J. Comp. Phys. 128 237

    [21]

    Schoch S, Nordin-Bates K, Nikiforakis N 2013 J. Comp. Phys. 252 163

    [22]

    Strang G 1968 SIAM J. Num. Anal. 5 506

    [23]

    Leveque R J 1997 J. Comp. Phys. 131 327

    [24]

    Zhong X L 1996 J. Comp. Phys. 128 19

    [25]

    Lee E F, Tarver C M 1980 Phys. Fluids 23 2362

    [26]

    Ralph M 2015 JWL Equation of State (Los Alamos: Los Alamos National Laboratory) LA-UR-15-29536

    [27]

    Mader C L 1998 Numerical Modeling of Explosives and Propellants (2nd Ed.) New York: CRC Press) pp271-272

  • [1] Han Xiao-Ying, Li Ling-Xiao, Dai Zhen-Sheng, Zheng Wu-Di, Gu Pei-Jun, Wu Ze-Qing. A general model for rapid simulation of hot dense plasmas under non-local thermal equilibrium conditions. Acta Physica Sinica, 2021, 70(11): 115202. doi: 10.7498/aps.70.20201946
    [2] Liu Long, Xia Zhi-Xun, Huang Li-Ya, Ma Li-Kun, Chen Bin-Bin. Numerical investigation of one-dimensional unsteady detonation wave characteristics of magnesium particle-air mixture. Acta Physica Sinica, 2020, 69(19): 194701. doi: 10.7498/aps.69.20200549
    [3] Liu Long, Xia Zhi-Xun, Huang Li-Ya, Ma Li-Kun, Na Xu-Dong. Numerical investigation of one-dimensional steady detonation wave characteristics for magnesium particle-air mixture. Acta Physica Sinica, 2019, 68(24): 244701. doi: 10.7498/aps.68.20190974
    [4] Liu Rui-Fen, Hui Zhi-Xin, Xiong Ke-Zhao, Zeng Chun-Hua. Correlated noise induced non-equilibrium phase transition in surface catalytic reaction model. Acta Physica Sinica, 2018, 67(16): 160501. doi: 10.7498/aps.67.20180250
    [5] Liang Xiao, Wang Rui-Li. Sensitivity analysis and validation of detonation computational fluid dynamics model. Acta Physica Sinica, 2017, 66(11): 116401. doi: 10.7498/aps.66.116401
    [6] Yin Jian-Wei, Pan Hao, Wu Zi-Hui, Hao Peng-Cheng, Hu Xiao-Mian. A growth study of the Richtmyer-Meshkov flow in the elastoplastic solids under explosive loading. Acta Physica Sinica, 2017, 66(7): 074701. doi: 10.7498/aps.66.074701
    [7] Wang Yan-Jin, Zhang Shu-Dao, Li Hua, Zhou Hai-Bing. Uncertain parameters of Jones-Wilkin-Lee equation of state for detonation products of explosive. Acta Physica Sinica, 2016, 65(10): 106401. doi: 10.7498/aps.65.106401
    [8] Yu Ming, Liu Quan. Refraction of detonation wave at interface between condensed explosives and high sound-speed material. Acta Physica Sinica, 2016, 65(2): 024702. doi: 10.7498/aps.65.024702
    [9] Zhou Hong-Qiang, Yu Ming, Sun Hai-Quan, He An-Min, Chen Da-Wei, Zhang Feng-Guo, Wang Pei, Shao Jian-Li. Calculation of equation of state of a material mixture. Acta Physica Sinica, 2015, 64(6): 064702. doi: 10.7498/aps.64.064702
    [10] Zhao Ji-Bo, Sun Cheng-Wei, Gu Zhuo-Wei, Zhao Jian-Heng, Luo Hao. Magneto-hydrodynamic calculation of magnetic flux compression with explosion driven solid liners and analysis of quasi-isentropic process. Acta Physica Sinica, 2015, 64(8): 080701. doi: 10.7498/aps.64.080701
    [11] Yu Ming, Sun Yu-Tao, Liu Quan. Analysis on refraction of detonation wave at the explosive-metal interface. Acta Physica Sinica, 2015, 64(11): 114702. doi: 10.7498/aps.64.114702
    [12] Zhou Hong-Qiang, Yu Ming, Sun Hai-Quan, Dong He-Fei, Zhang Feng-Guo. A continuum constitutive model and computational method of explosive detonation. Acta Physica Sinica, 2014, 63(22): 224702. doi: 10.7498/aps.63.224702
    [13] Yu Rong, Jiang Yue-Song, Yu Lan, Ou Jun. Using scattered light to amplify the photoacoustic spectroscopic signatures of the main absorbing material in a weakly light-absorbing solid mixture. Acta Physica Sinica, 2013, 62(8): 087802. doi: 10.7498/aps.62.087802
    [14] Mu Zong-Xin, Li Guo-Qing, Qin Fu-Wen, Huang Kai-Yu, Che De-Liang. The model of the magnetic mirror effect in the unbalanced magnetron sputtering ion beams. Acta Physica Sinica, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [15] Mu Zong-Xin, Li Guo-Qing, Che De-Liang, Huang Kai-Yu, Liu Cui. Investigation of the model of the discharge properties of the unbalanced magnetron sputtering system. Acta Physica Sinica, 2004, 53(6): 1994-1999. doi: 10.7498/aps.53.1994
    [16] Wen Chao, Sun De-Yu, Li Xun, Guan Jin-Qing, Liu Xiao-Xin, Lin Ying-Rui, Tang Shi-Ying, Zhou Gang, Lin Jun-De, Jin Zhi-Hao. Nano-graphite synthesized by explosive detonation and its application in preparing diamond under high-pressure and high-temperature. Acta Physica Sinica, 2004, 53(4): 1260-1264. doi: 10.7498/aps.53.1260
    [17] Wen Chao, Jin Zhi-Hao, Li Xun, Sun De-Yu, Guan Jin-Qing, Liu Xiao-Xin, Lin Ying-Rui, Tang Shi-Ying, Zhou Gang, Lin Jun-De. Experimental study on the hydrogen storage and release in nano-graphite synthesized by explosive detonation. Acta Physica Sinica, 2004, 53(7): 2384-2388. doi: 10.7498/aps.53.2384
    [18] SHAO YUAN-ZHI, LAN TU, LIN GUANG-MING. DYNAMICAL TRANSITION AND TRICRITICAL POINTS OF 3D KINETIC ISING SPIN SYSTEM . Acta Physica Sinica, 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [19] XIAO DING-QUAN, WEI LI-FAN, LI ZI-SEN, ZHU JIAN-GUO, QIAN ZHENG-HONG, PENG WEN-BIN. MODELLING OF MULTI-ION-BEAM REACTIVE COSPUTTERING OF METAL OXIDE THIN FILMS (I)——ESTABLISHMENT OF THE MODEL. Acta Physica Sinica, 1996, 45(2): 330-338. doi: 10.7498/aps.45.330
    [20] LI FU-BIN. CONSTITUTION OF THE MODEL OF NONEQUILIBRIUM PHASE TRANSITION BY THE CELLULAR AUTOMATA APPROACH. Acta Physica Sinica, 1992, 41(11): 1837-1841. doi: 10.7498/aps.41.1837
Metrics
  • Abstract views:  3980
  • PDF Downloads:  49
  • Cited By: 0
Publishing process
  • Received Date:  21 November 2017
  • Accepted Date:  20 August 2018
  • Published Online:  05 November 2018

/

返回文章
返回