Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of magnetic radial vortex under effect of interfacial DzyaloshinskiiMoriya interaction

Dong Dan-Na Cai Li Li Cheng Liu Bao-Jun Li Chuang Liu Jia-Hao

Citation:

Mechanism of magnetic radial vortex under effect of interfacial DzyaloshinskiiMoriya interaction

Dong Dan-Na, Cai Li, Li Cheng, Liu Bao-Jun, Li Chuang, Liu Jia-Hao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently, the topological magnetic textures, such as magnetic vortex, skyrmion, meron, have attracted wide attention. Siracusano et al. [Siracusano G, Tomasello R, Giordano A, et al. 2016 Phys. Rev. Lett. 117 087204] found a new topological magnetic configuration, named a magnetic radial vortex. The magnetic radial vortex state is a stable topological magnetic texture. The magnetization in the center of the magnetic radial vortex, namely the radial vortex polarity, points upward or downward. The in-plane component of the magnetization, namely, the radial vortex radial chirality, orientates radially outward or inward. The magnetic radial vortex has become another emerging research hotspot after skyrmion, which can be attributed to its better thermal stability and lower driven current density. In this paper, we investigate the nucleation mechanism of magnetic radial vortex under the effect of interfacial Dzyaloshinskii-Moriya interaction (IDMI) by using the micromagnetic simulation. The results indicate that the smaller the diameter of the soft magnetic nanodisk, the more easily the wider range of the intensity of IDMI is created. When the thickness of the disk is increased by one order of magnitude, the magnetic radial vortex can be formed stably. Therefore, the intensity of IDMI can be further reduced by appropriately choosing the disc size. The magnetic radial vortex can be nucleated no matter whether the initial magnetization configuration is circular vortex or uniform state. However, if the initial state is uniform, the magnetization component along the z-axis direction is prerequisite. In the magnetic radial vortex nucleation process, the nucleation time of the uniform state is significantly longer than that of circular vortex, and the energy variation time of circular vortex is longer than that of the uniform state. In the process of the formation of magnetic radial vortex, the variation of magnetic moment, skyrmion number and energy are determined by different initial magnetization configurations. This work contributes to the understanding of the mechanism of magnetic radial vortex and provides a theoretical guideline for choosing reasonable disc size and IDMI strength. Moreover, the above-mentioned conclusions contribute to the practical applications of magnetic radial vortex in spin electric devices.
      Corresponding author: Cai Li, qianglicai@163.com;liubaojun102519@sina.com ; Liu Bao-Jun, qianglicai@163.com;liubaojun102519@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11405270) and the Natural Science for Basic Research Program of Shaanxi Province, China (Grant No. 2017JM6072).
    [1]

    Cowburn R P, Koltsov D K, Adeyeye A O, Welland M E, Tricker D M 1999 Phys. Rev. Lett. 83 1042

    [2]

    de Alfaro V, Fubini S, Furlan G 1976 Phys. Lett. B 65 163

    [3]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [4]

    Phatak C, Petford-Long A K, Heinonen O 2012 Phys. Rev. Lett. 108 067205

    [5]

    Li C, Cai L, Liu B J, Yang X K, Cui H Q, Wang S, Wei B 2018 AIP Adv. 8 055314

    [6]

    Hrabec A, Porter N A, Wells A, Benitez M J, Burnell G, McVitie S, McGrouther D, Moore T A, Marrows C H 2014 Phys. Rev. B 90 020402

    [7]

    Tomasello R, Carpentieri M, Finocchio G 2014 J. Appl Phys. 115 17C730

    [8]

    Eason K, Feng K J, Wei Kho Z, Hin Sim C, Tran M, Cheng H J, Sabino M, Kun He S 2014 J. Appl. Phys. 115 17C902

    [9]

    Zhang Z D 2015 Acta Phys. Sin. 64 067503 (in Chinese) [张志东 2015 物理学报 64 067503]

    [10]

    Siracusano G, Tomasello R, Giordano A, Puliafito V, Azzerboni B, Ozatay O, Carpentieri M, Finocchio G 2016 Phys. Rev. Lett. 117 087204

    [11]

    Hellman F, Hoffmann A, Tserkovnyak Y, Beach G, Fullerton E E, Leighton C, MacDonald A H, Ralph D C, Arena D A, Drr H A, Fischer P, Grollier J, Heremans J P, Jungwirth T, Kimelet A V, Koopmans B, Krivorotov I N, May S J, Petford-Long A K, Rondinelli J M, Samarth N, Schuller I K, Slavin A N, Stiles M D, Tchernyshyov O, Thiaville A, Zink B L 2017 Rev. Mod. Phys. 89 025006

    [12]

    Cui H Q, Cai L, Yang X K, Wang S, Zhang M L, Li C, Feng C W 2018 Appl. Phys. Lett. 112 092404

    [13]

    Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A 2014 Appl. Phys. Lett. 104 012407

    [14]

    Jenkins A S, Grimaldi E, Bortolotti P, Lebrun R, Kubota H, Yakushiji K, Fukushima A, de Loubens G, Klein O, Yuasa S, Cros V 2014 Appl. Phys. Lett. 105 172403

    [15]

    Cambel V, Karapetrov G 2011 Phys. Rev. B 84 014424

    [16]

    Karakas V, Gokce A, Habiboglu A T, Arpaci S, Ozbozduman K, Cinar I, Yanik C, Tomasello R, Tacchi S, Siracusano G, Carpentieri M, Finocchio G, Hauet T, Ozatay O 2018 Sci. Rep. UK 8 7180

    [17]

    Li C, Cai L, Wang S, Yang X K, Cui H Q, Wei B, Dong D N, Li C, Liu J H, Liu B J 2018 IEEE Trans. Magn. 54 3400806

    [18]

    Li C, Cai L, Yang X K, Cui H Q, Wang S, Wei B, Dong D N, Li C, Liu J H, Liu B J 2018 IEEE Magn. Lett. 9 4102204

    [19]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [20]

    Joshi V K 2016 Eng. Sci. Technol. Int. J. 19 1503

    [21]

    Li C, Cai L, Wang S, Liu B J, Cui H Q, Wei B 2017 Acta Phys. Sin. 66 208501 (in Chinese) [李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波 2017 物理学报 66 208501]

    [22]

    Puliafito V, Torres L, Ozatay O, Hauet T, Azzerboni B, Finocchio G 2014 J. Appl. Phys. 115 17D139

    [23]

    Vaňatka, Urbánek M, Jíra R, Flajšman L, Dhankhar Me, Im M Y, Michalička J, Uhlí V, Šikola T 2017 AIP Adv. 7 105103

    [24]

    Tacchi S, Troncoso R E, Ahlberg M, Gubbiotti G, Madami M, Akerman J, Landeros P 2017 Phys. Rev. Lett. 118 147201

    [25]

    Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, van Waeyenberge B 2014 AIP Adv. 4 107133

    [26]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899

    [27]

    Cubukcu M, Sampaio J, Bouzehouane K, Apalkov D, Khvalkovskiy A V, Cros V, Reyren N 2016 Phys. Rev. B 93 020401

  • [1]

    Cowburn R P, Koltsov D K, Adeyeye A O, Welland M E, Tricker D M 1999 Phys. Rev. Lett. 83 1042

    [2]

    de Alfaro V, Fubini S, Furlan G 1976 Phys. Lett. B 65 163

    [3]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [4]

    Phatak C, Petford-Long A K, Heinonen O 2012 Phys. Rev. Lett. 108 067205

    [5]

    Li C, Cai L, Liu B J, Yang X K, Cui H Q, Wang S, Wei B 2018 AIP Adv. 8 055314

    [6]

    Hrabec A, Porter N A, Wells A, Benitez M J, Burnell G, McVitie S, McGrouther D, Moore T A, Marrows C H 2014 Phys. Rev. B 90 020402

    [7]

    Tomasello R, Carpentieri M, Finocchio G 2014 J. Appl Phys. 115 17C730

    [8]

    Eason K, Feng K J, Wei Kho Z, Hin Sim C, Tran M, Cheng H J, Sabino M, Kun He S 2014 J. Appl. Phys. 115 17C902

    [9]

    Zhang Z D 2015 Acta Phys. Sin. 64 067503 (in Chinese) [张志东 2015 物理学报 64 067503]

    [10]

    Siracusano G, Tomasello R, Giordano A, Puliafito V, Azzerboni B, Ozatay O, Carpentieri M, Finocchio G 2016 Phys. Rev. Lett. 117 087204

    [11]

    Hellman F, Hoffmann A, Tserkovnyak Y, Beach G, Fullerton E E, Leighton C, MacDonald A H, Ralph D C, Arena D A, Drr H A, Fischer P, Grollier J, Heremans J P, Jungwirth T, Kimelet A V, Koopmans B, Krivorotov I N, May S J, Petford-Long A K, Rondinelli J M, Samarth N, Schuller I K, Slavin A N, Stiles M D, Tchernyshyov O, Thiaville A, Zink B L 2017 Rev. Mod. Phys. 89 025006

    [12]

    Cui H Q, Cai L, Yang X K, Wang S, Zhang M L, Li C, Feng C W 2018 Appl. Phys. Lett. 112 092404

    [13]

    Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A 2014 Appl. Phys. Lett. 104 012407

    [14]

    Jenkins A S, Grimaldi E, Bortolotti P, Lebrun R, Kubota H, Yakushiji K, Fukushima A, de Loubens G, Klein O, Yuasa S, Cros V 2014 Appl. Phys. Lett. 105 172403

    [15]

    Cambel V, Karapetrov G 2011 Phys. Rev. B 84 014424

    [16]

    Karakas V, Gokce A, Habiboglu A T, Arpaci S, Ozbozduman K, Cinar I, Yanik C, Tomasello R, Tacchi S, Siracusano G, Carpentieri M, Finocchio G, Hauet T, Ozatay O 2018 Sci. Rep. UK 8 7180

    [17]

    Li C, Cai L, Wang S, Yang X K, Cui H Q, Wei B, Dong D N, Li C, Liu J H, Liu B J 2018 IEEE Trans. Magn. 54 3400806

    [18]

    Li C, Cai L, Yang X K, Cui H Q, Wang S, Wei B, Dong D N, Li C, Liu J H, Liu B J 2018 IEEE Magn. Lett. 9 4102204

    [19]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [20]

    Joshi V K 2016 Eng. Sci. Technol. Int. J. 19 1503

    [21]

    Li C, Cai L, Wang S, Liu B J, Cui H Q, Wei B 2017 Acta Phys. Sin. 66 208501 (in Chinese) [李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波 2017 物理学报 66 208501]

    [22]

    Puliafito V, Torres L, Ozatay O, Hauet T, Azzerboni B, Finocchio G 2014 J. Appl. Phys. 115 17D139

    [23]

    Vaňatka, Urbánek M, Jíra R, Flajšman L, Dhankhar Me, Im M Y, Michalička J, Uhlí V, Šikola T 2017 AIP Adv. 7 105103

    [24]

    Tacchi S, Troncoso R E, Ahlberg M, Gubbiotti G, Madami M, Akerman J, Landeros P 2017 Phys. Rev. Lett. 118 147201

    [25]

    Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, van Waeyenberge B 2014 AIP Adv. 4 107133

    [26]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899

    [27]

    Cubukcu M, Sampaio J, Bouzehouane K, Apalkov D, Khvalkovskiy A V, Cros V, Reyren N 2016 Phys. Rev. B 93 020401

  • [1] Yan Jian, Ren Zhi-Wei, Zhong Zhi-Yong. Spin waves in Y3Fe5O12-CoFeB spin-wave directional coupler. Acta Physica Sinica, 2021, 70(18): 187501. doi: 10.7498/aps.70.20210507
    [2] Ma Xiao-Ping, Yang Hong-Guo, Li Chang-Feng, Liu You-Ji, Piao Hong-Guang. Control of magnetic vortex circulation in one-side-flat nanodisk pairs by in-plane magnetic filed. Acta Physica Sinica, 2021, 70(10): 107502. doi: 10.7498/aps.70.20201995
    [3] Li Dong, Dong Sheng-Zhi, Li Lei, Xu Ji-Yuan, Chen Hong-Sheng, Li Wei. Micromagnetic simulations of reversal magnetization in core ((Nd0.7, Ce0.3)2Fe14B)-shell (Nd2Fe14B) type. Acta Physica Sinica, 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [4] Kong Ling-Yao. Research progress on topological properties and micro-magnetic simulation study in dynamics of magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [5] Xu Gui-Zhou, Xu Zhan, Ding Bei, Hou Zhi-Peng, Wang Wen-Hong, Xu Feng. Magnetic domain chirality and tuning of skyrmion topology. Acta Physica Sinica, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [6] Xia Jing, Han Zong-Yi, Song Yi-Fan, Jiang Wen-Jing, Lin Liu-Rong, Zhang Xi-Chao, Liu Xiao-Xi, Zhou Yan. Overview of magnetic skyrmion-based devices and applications. Acta Physica Sinica, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [7] Jin Chen-Dong, Song Cheng-Kun, Wang Jin-Shuai, Wang Jian-Bo, Liu Qing-Fang. Research progress of micromagnetic magnetic skyrmions and applications. Acta Physica Sinica, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [8] Lü Gang, Cao Xue-Cheng, Zhang Hong, Qin Yu-Feng, Wang Lin-Hui, Li Gui-Hua, Gao Feng, Sun Feng-Wei. Local energy of magnetic vortex core reversal. Acta Physica Sinica, 2016, 65(21): 217503. doi: 10.7498/aps.65.217503
    [9] Sun Ming-Juan, Liu Yao-Wen. Controlling of magnetic vortex chirality and polarity by spin-polarized current. Acta Physica Sinica, 2015, 64(24): 247505. doi: 10.7498/aps.64.247505
    [10] Sun Lu, Huo Yan, Zhou Chao, Liang Jian-Hui, Zhang Xiang-Zhi, Xu Zi-Jian, Wang Yong, Wu Yi-Zheng. STXM observation and quantitative study of magnetic vortex structure. Acta Physica Sinica, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [11] Zhang Zhi-Dong. Magnetic structures, magnetic domains and topological magnetic textures of magnetic materials. Acta Physica Sinica, 2015, 64(6): 067503. doi: 10.7498/aps.64.067503
    [12] Peng Yi, Zhao Guo-Ping, Wu Shao-Quan, Si Wen-Jing, Wan Xiu-Lin. Micromagnetic simulation and analysis of Nd2Fe14B/Fe65Co35 magnetic bilayered thin films with different orientations of the easy axis. Acta Physica Sinica, 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [13] Xia Jing, Zhang Xi-Chao, Zhao Guo-Ping. Micromagnetic analysis of the effect of the easy axis orientation on demagnetization process in Nd2Fe14B/α-Fe bilayers. Acta Physica Sinica, 2013, 62(22): 227502. doi: 10.7498/aps.62.227502
    [14] Fan Zhe, Ma Xiao-Ping, Lee Sang-Hyuk, Shim Je-Ho, Piao Hong-Guang, Kim Dong-Hyun. Influences of the demagnetizing field on dynamic behaviors of the magnetic domain wall in ferromagnetic nanowires. Acta Physica Sinica, 2012, 61(10): 107502. doi: 10.7498/aps.61.107502
    [15] Lu Hai-Peng, Han Man-Gui, Deng Long-Jiang, Liang Di-Fei, Ou Yu. Finite elements micromagnetism simulation on the dynamic reversal of magnetic moments of Co nanowires. Acta Physica Sinica, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [16] Song San-Yuan, Guo Guang-Hua, Zhang Guang-Fu, Song Wen-Bin. Dynamical reversal of rectangular nanodot studied by micromagnetics. Acta Physica Sinica, 2009, 58(8): 5757-5762. doi: 10.7498/aps.58.5757
    [17] Cai Zhuo, Lu Wen-Bin, Liu Yong-Jun. Effects of the staggered Dzyaloshinskii-Moriya interaction on entanglement in antiferromagnetic Heisenberg chain. Acta Physica Sinica, 2008, 57(11): 7267-7273. doi: 10.7498/aps.57.7267
    [18] Yang Xiu-Hui. Micromagnetic simulations of the initial spontaneous magnetic states of nanoscale Fe islands on W(110) substrates. Acta Physica Sinica, 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [19] Yin Jin-Hua, C. H. Hee, Pan Li-Qing. First order reversal curves of laminated antiferromagnetically coupled media. Acta Physica Sinica, 2008, 57(11): 7287-7291. doi: 10.7498/aps.57.7287
    [20] XIAO JUN-JUN, SUN CHAO, XUE DE-SHENG, LI FA-SHEN. STUDY ON MAGNETIC PROPERTIES OF Fe-NANOWIRES BY MICROMAGNETIC SIMULATION. Acta Physica Sinica, 2001, 50(8): 1605-1609. doi: 10.7498/aps.50.1605
Metrics
  • Abstract views:  5173
  • PDF Downloads:  115
  • Cited By: 0
Publishing process
  • Received Date:  20 July 2018
  • Accepted Date:  03 September 2018
  • Published Online:  20 November 2019

/

返回文章
返回