Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of layer variation on the electronic structure of stacked MoS2(1-x) Se2x alloy

Wang Wen-Jie Kang Zhi-Lin Song Qian Wang Xin Deng Jia-Jun Ding Xun-Lei Che Jian-Tao

Citation:

Effect of layer variation on the electronic structure of stacked MoS2(1-x) Se2x alloy

Wang Wen-Jie, Kang Zhi-Lin, Song Qian, Wang Xin, Deng Jia-Jun, Ding Xun-Lei, Che Jian-Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Two-dimensional transition metal dichalcogenides (TMDCs) have the extensive application prospect in multifunctional electronics and photonics due to their unique electro-optical properties. In order to further expand their application scope in micro-nano optoelectronic devices and improve the performance of devices, the band-gap and defective engineering have been studied to tune the band-gap, morphology and structure of two-dimensional semiconductor materials. The tunning of the bandgap of MoS2(1-x) Se2x alloy has been typically achieved by controlling the Se concentration. Theoretical calculations revealed that layered stacked two-dimensional alloy materials with a larger aspect ratio, exposed edges and obvious edge dangling bonds show enhanced HER activity as compared with TMDCs. In this paper, the properties of stacked MoS2(1-x) Se2x alloy grown by the chemical vapor deposition method in a quartz tube furnace are investigated by using optical microscopy (OM), atomic force microscopy (AFM), scanning tunneling microscopy (SEM), Raman, photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS). The OM and SEM images of the as-synthesized stacked MoS2(1-x)Se2x alloy show apparent interface between layers and their thickness is further acquired by AFM. Unlike most of single-layer or few-layer MoS2(1-x)Se2x alloys, stack-grown stepped MoS2(1-x) Se2x alloy materials all present the strong luminescence properties despite the thickness increasing from 2.2 nm (~3 layers) to 5.6 nm (~7 layers). And even till 100 nm, the emission spectrum with two luminescence peaks can still be observed. The two exciton luminescence peaks A and B are derived from the valence band splitting caused by the spin-orbit coupling, respectively. As the thickness increases, the two luminescence peaks are red-shifted and exhibit a band-bending effect that is only present when the alloy doping concentration is changed. As the sample thickness is 5.6 nm, a C-peak at 650 nm at the high energy end of the PL spectrum is observed, which may be attributed to the transition luminescence from the defect energy level introduced by Se (S) substitution, interstice or cluster. When the number of layers is small, the number of defects is small, so that the luminescence is not observed. As the number of layers increases, the defects increase to form a defect energy level. However, when the material thickness continuously increases until the bulk material is formed, the luminescence disappears in the PL spectrum because the band gap is reduced and the band gap is made smaller than the defect energy level. Raman spectroscopy gives two sets of vibration modes:like-MoS2 and like-MoSe2. The Raman peak is almost unchanged as the thickness increases, but the two vibration modes E2g (Mo-Se) and E2 g (Mo-S) in the plane gradually appear and increase. At the same time, the intensity ratio and line width of Mo-Se related vibration mode E2g/A1g increase with thickness increasing, which indicates the enhancement of the Mo-Se in-plane vibration mode and the incorporation of randomness of Se into the lattice. Obviously, the defects and stress are the main factors affecting the electronic structure of stacked MoS2(1-x) Se2x alloy, which provides a meaningful reference for preparing the special functional devices and studying the controllable defect engineering.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 91545122) and the Fundamental Research Fund for the Central Universities, China (Grant Nos. JB2015RCY03, 2016MS68).
    [1]

    Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V 2015 Science 347 1246501

    [2]

    Tedstone A A, Lewis D J, O'Brien P 2016 Chem. Mater. 28 1965

    [3]

    Wei X, Yan F G, Shen C, Lü Q S, Wang K Y 2017 Chin. Phys. B 26 38504

    [4]

    Zeng Q S, Wang H, Fu W, Gong Y J, Zhou W, Ajayan P M, Lou J, Liu Z 2015 Small 11 1868

    [5]

    Feng Q L, Zhu Y M, Hong J H, Zhang M, Duan W J, Mao N N, Wu J X, Xu H, Dong F L, Lin F 2014 Adv. Mater. 26 2648

    [6]

    Dumcenco D O, Kobayashi H, Liu Z, Huang Y S, Suenaga K 2013 Nature 4 1351

    [7]

    Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F 2014 Nat. Nano Technol. 9 682

    [8]

    Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O 2013 Nat. Nano Technol. 8 100

    [9]

    Chen J, Wang X M, Zhang J C, Yin H B, Yu J, Zhao Y, Wu W D 2017 Chin. Phys. B 26 87309

    [10]

    Su S H, Hsu W T, Hsu C L, Chen C H, Chiu M H, Lin Y C, Chang W H, Suenaga K, He J H, Li L J 2014 Front. Energy. Res. 2 27

    [11]

    Su S H, Hsu Y T, Chang Y H, Chiu M H, Hsu C L, Hsu W T, Chang W H, He J H, Li L J 2014 Small 10 2589

    [12]

    Mann J, Ma Q, Odenthal P M, Isarraraz M, Le D, Preciado E, Barroso D, Yamaguchi K, Palacio G V S, Nguyen A, Tran T, Wurch M, Nguyen A, Klee V, Bobek S, Sun D, Heinz T F, Rahman T S, Kawakami R, Bartels L 2014 Adv. Mater. 26 1399

    [13]

    Li H, Zhang Q, Duan X, Wu X, Fan X, Zhu X, Zhuang X, Hu W, Zhou H, Pan A 2015 J. Am. Chem. Soc. 137 5284

    [14]

    Rajbanshi B, Sarkar S, Sarkar P 2015 Phys. Chem. Chem. Phys. 17 26166

    [15]

    Jiang S, Yin X, Zhang J T, Zhu X Y, Li J Y, He M 2015 Nanoscale 7 10459

    [16]

    Jaramillo T F, Jørgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I 2007 Science 317 100

    [17]

    Shi J, Ma D, Han G F, Zhang Y, Ji Q, Gao T, Sun J, Song X, Li C, Zhang Y 2014 ACS Nano 8 10196

    [18]

    Li H, Wu H, Yuan S, Qian H 2016 Sci. Rep. 6 21171

    [19]

    Tongay S, Narang D S, Kang J, Fan W, Ko C, Luce A V, Wang K X, Suh J, Patel K, Pathak V 2014 Appl. Phys. Lett. 104 012101

    [20]

    Hirth J, Pound G M 1964 Condensation and Evaporation; Nucleation and Growth Kinetics 11 p191

    [21]

    Baskaran A, Smereka P 2012 J. Appl. Phys. 111 044321

    [22]

    Ramakrishna Matte H, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C 2010 Angew. Chem. Int. Edit. 49 4059

    [23]

    Kiran V, Mukherjee D, Jenjeti R N, Sampath S 2014 Nanoscale 6 12856

    [24]

    Yang L, Fu Q, Wang W, Huang J, Huang J, Zhang J, Xiang B 2015 Nanoscale 7 10490

    [25]

    Jadczak J, Dumcenco D O, Huang Y S, Lin Y C 2014 J. Appl. Phys. 116 193

    [26]

    Kong D, Wang H, Cha J J, Pasta M, Koski K J, Yao J, Cui Y 2013 Nano Lett. 13 1341

    [27]

    Le C T, Clark D J, Ullah F, Jang J I, Senthilkumar V, Sim Y, Seong M J, Chung K H, Ji W K, Park S 2016 ACS Photon. 4 38

    [28]

    Castellanos-Gomez A, Roldãn R, Cappelluti E, Buscema M, Guinea F, van der Zant H S, Steele G A 2013 Nano Lett. 13 5361

    [29]

    Kang J, Zhang L, Wei S H 2016 J. Phys. Chem. Lett. 7 597

    [30]

    Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov A V 2012 Phys. Rev. Lett. 109 035503

    [31]

    Fan X, Singh D J, Zheng W 2016 J. Phys. Chem. Lett. 7 2175

    [32]

    Echeverry J P, Urbaszek B, Amand T, Marie X, Gerber I C 2016 Phys. Rev. B 93 121107

    [33]

    Dubey S, Lisi S, Nayak G, Herziger F, Nguyen V D, Le T Q, Cherkez V, González C, Dappe Y J, Watanabe K 2017 ACS Nano 11 11206

  • [1]

    Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V 2015 Science 347 1246501

    [2]

    Tedstone A A, Lewis D J, O'Brien P 2016 Chem. Mater. 28 1965

    [3]

    Wei X, Yan F G, Shen C, Lü Q S, Wang K Y 2017 Chin. Phys. B 26 38504

    [4]

    Zeng Q S, Wang H, Fu W, Gong Y J, Zhou W, Ajayan P M, Lou J, Liu Z 2015 Small 11 1868

    [5]

    Feng Q L, Zhu Y M, Hong J H, Zhang M, Duan W J, Mao N N, Wu J X, Xu H, Dong F L, Lin F 2014 Adv. Mater. 26 2648

    [6]

    Dumcenco D O, Kobayashi H, Liu Z, Huang Y S, Suenaga K 2013 Nature 4 1351

    [7]

    Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F 2014 Nat. Nano Technol. 9 682

    [8]

    Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O 2013 Nat. Nano Technol. 8 100

    [9]

    Chen J, Wang X M, Zhang J C, Yin H B, Yu J, Zhao Y, Wu W D 2017 Chin. Phys. B 26 87309

    [10]

    Su S H, Hsu W T, Hsu C L, Chen C H, Chiu M H, Lin Y C, Chang W H, Suenaga K, He J H, Li L J 2014 Front. Energy. Res. 2 27

    [11]

    Su S H, Hsu Y T, Chang Y H, Chiu M H, Hsu C L, Hsu W T, Chang W H, He J H, Li L J 2014 Small 10 2589

    [12]

    Mann J, Ma Q, Odenthal P M, Isarraraz M, Le D, Preciado E, Barroso D, Yamaguchi K, Palacio G V S, Nguyen A, Tran T, Wurch M, Nguyen A, Klee V, Bobek S, Sun D, Heinz T F, Rahman T S, Kawakami R, Bartels L 2014 Adv. Mater. 26 1399

    [13]

    Li H, Zhang Q, Duan X, Wu X, Fan X, Zhu X, Zhuang X, Hu W, Zhou H, Pan A 2015 J. Am. Chem. Soc. 137 5284

    [14]

    Rajbanshi B, Sarkar S, Sarkar P 2015 Phys. Chem. Chem. Phys. 17 26166

    [15]

    Jiang S, Yin X, Zhang J T, Zhu X Y, Li J Y, He M 2015 Nanoscale 7 10459

    [16]

    Jaramillo T F, Jørgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I 2007 Science 317 100

    [17]

    Shi J, Ma D, Han G F, Zhang Y, Ji Q, Gao T, Sun J, Song X, Li C, Zhang Y 2014 ACS Nano 8 10196

    [18]

    Li H, Wu H, Yuan S, Qian H 2016 Sci. Rep. 6 21171

    [19]

    Tongay S, Narang D S, Kang J, Fan W, Ko C, Luce A V, Wang K X, Suh J, Patel K, Pathak V 2014 Appl. Phys. Lett. 104 012101

    [20]

    Hirth J, Pound G M 1964 Condensation and Evaporation; Nucleation and Growth Kinetics 11 p191

    [21]

    Baskaran A, Smereka P 2012 J. Appl. Phys. 111 044321

    [22]

    Ramakrishna Matte H, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C 2010 Angew. Chem. Int. Edit. 49 4059

    [23]

    Kiran V, Mukherjee D, Jenjeti R N, Sampath S 2014 Nanoscale 6 12856

    [24]

    Yang L, Fu Q, Wang W, Huang J, Huang J, Zhang J, Xiang B 2015 Nanoscale 7 10490

    [25]

    Jadczak J, Dumcenco D O, Huang Y S, Lin Y C 2014 J. Appl. Phys. 116 193

    [26]

    Kong D, Wang H, Cha J J, Pasta M, Koski K J, Yao J, Cui Y 2013 Nano Lett. 13 1341

    [27]

    Le C T, Clark D J, Ullah F, Jang J I, Senthilkumar V, Sim Y, Seong M J, Chung K H, Ji W K, Park S 2016 ACS Photon. 4 38

    [28]

    Castellanos-Gomez A, Roldãn R, Cappelluti E, Buscema M, Guinea F, van der Zant H S, Steele G A 2013 Nano Lett. 13 5361

    [29]

    Kang J, Zhang L, Wei S H 2016 J. Phys. Chem. Lett. 7 597

    [30]

    Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov A V 2012 Phys. Rev. Lett. 109 035503

    [31]

    Fan X, Singh D J, Zheng W 2016 J. Phys. Chem. Lett. 7 2175

    [32]

    Echeverry J P, Urbaszek B, Amand T, Marie X, Gerber I C 2016 Phys. Rev. B 93 121107

    [33]

    Dubey S, Lisi S, Nayak G, Herziger F, Nguyen V D, Le T Q, Cherkez V, González C, Dappe Y J, Watanabe K 2017 ACS Nano 11 11206

  • [1] Liu Wei, Feng Qiu-Ju, Yi Zi-Qi, Yu Chen, Wang Shuo, Wang Yan-Ming, Sui Xue, Liang Hong-Wei. Preparation and ultraviolet detection performance of Cu doped β-Ga2O3 thin films. Acta Physica Sinica, 2023, 72(19): 198503. doi: 10.7498/aps.72.20230971
    [2] Fang Wen-Yu, Chen Yue, Ye Pan, Wei Hao-Ran, Xiao Xing-Lin, Li Ming-Kai, Ahuja Rajeev, He Yun-Bin. Elastic constants, electronic structures and thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt). Acta Physica Sinica, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [3] Wang Wen-Xun, Ren Yan-Biao, Zhang Shi-Chao, Zhang Lin-Cai, Qi Jing-Bo, He Xiao-Wu. Preparation of three-dimensional graphene foam with controllable defects by closed-environment chemical vapor deposition method and composite electrode electrochemical performance. Acta Physica Sinica, 2020, 69(14): 148101. doi: 10.7498/aps.69.20200454
    [4] Yang Yan-Min, Li Jia, Ma Hong-Ran, Yang Guang, Mao Xiu-Juan, Li Cong-Cong. First-principles study of structure, electronic structure and thermoelectric properties for Co2-based Heusler alloys Co2FeAl1–xSix (x = 0.25, x = 0.5, x = 0.75). Acta Physica Sinica, 2019, 68(4): 046101. doi: 10.7498/aps.68.20181641
    [5] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [6] Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Physica Sinica, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [7] Yang Yun-Chang, Wu Bin, Liu Yun-Qi. Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices. Acta Physica Sinica, 2017, 66(21): 218101. doi: 10.7498/aps.66.218101
    [8] Huang Jing-Wen, Luo Li-Qiong, Jin Bo, Chu Shi-Jin, Peng Ru-Fang. Synthesis and photoluminescence property of hexangular star MoSe2 bilayer. Acta Physica Sinica, 2017, 66(13): 137801. doi: 10.7498/aps.66.137801
    [9] Ma Zhen-Ning, Zhou Quan, Wang Qing-Jie, Wang Xun, Wang Lei. First-principles study of the thermodynamic stabilities and electronic structures of long-period stacking ordered phases in Mg-Y-Cu alloys. Acta Physica Sinica, 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [10] Ma Zhen-Ning, Jiang Min, Wang Lei. First-principles study of electronic structures and phase stabilities of ternary intermetallic compounds in the Mg-Y-Zn alloys. Acta Physica Sinica, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [11] Lei Tian-Min, Wu Sheng-Bao, Zhang Yu-Ming, Guo Hui, Chen De-Lin, Zhang Zhi-Yong. Effects of La, Ce and Nd doping on the electronic structure of monolayer MoS2. Acta Physica Sinica, 2014, 63(6): 067301. doi: 10.7498/aps.63.067301
    [12] Han Lin-Zhi, Zhao Zhan-Xia, Ma Zhong-Quan. Process parameters of large single crystal graphene prepared by chemical vapor deposition. Acta Physica Sinica, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [13] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [14] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [15] Li Cong, Hou Qing-Yu, Zhang Zhen-Duo, Zhao Chun-Wang, Zhang Bing. First-principles study on the electronic structures and absorption spectra of Sm-N codoped anatase TiO2. Acta Physica Sinica, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [16] Wang Ying, Lu Tie-Cheng, Wang Yue-Zhong, Yue Shun-Li, Qi Jian-Qi, Pan Lei. Investigation of the electronic and mechanical properties of Al2O3-AlN solid solution by virtual crystal approximation. Acta Physica Sinica, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [17] Yang Li-Jun, Chen Hai-Chuan. First-principles calculations of electronic structure, optical and elastic properties of LiGaX2(X=S, Se, Te). Acta Physica Sinica, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [18] Su Rui, He Jie, Chen Jia-Sheng, Guo Ying-Jie. First principles study of the electronic structure and photoelectric properties of rutile vanadium dioxcide. Acta Physica Sinica, 2011, 60(10): 107101. doi: 10.7498/aps.60.107101
    [19] Zhang Xue-Jun, Gao Pan, Liu Qing-Ju. First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron. Acta Physica Sinica, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [20] Hu Hai-Xin, Zhang Zhen-Hua, Liu Xin-Hai, Qiu Ming, Ding Kai-He. Tight binding studies on the electronic structure of graphene nanoribbons. Acta Physica Sinica, 2009, 58(10): 7156-7161. doi: 10.7498/aps.58.7156
Metrics
  • Abstract views:  4931
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  06 August 2018
  • Accepted Date:  05 September 2018
  • Published Online:  20 December 2019

/

返回文章
返回