Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Point-contact Andreev reflection spectroscopy on Re3W superconductor

Wang Zong Hou Xing-Yuan Pan Bo-Jin Gu Ya-Dong Zhang Meng-Di Zhang Fan Chen Gen-Fu Ren Zhi-An Shan Lei

Citation:

Point-contact Andreev reflection spectroscopy on Re3W superconductor

Wang Zong, Hou Xing-Yuan, Pan Bo-Jin, Gu Ya-Dong, Zhang Meng-Di, Zhang Fan, Chen Gen-Fu, Ren Zhi-An, Shan Lei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Non-centrosymmetric superconductors have received considerable attention because of their possible possession of unconventional spin-triplet pairing.For this reason,the non-centrosymmetric Re3W with α -Mn structure has been widely concerned.However,almost all the previous studies support that the non-centrosymmetric phase of Re3W is a conventional weak-coupling s-wave superconductor.Later on,it is proved that Re3W has two different superconducting phases,one is the non-centrosymmetric phase and the other has a centrosymmetric hexagonal structure.Thus,a comparative study of these two superconducting phases could provide more information about the effect of non-centrosymmetric structure on the pairing symmetry of Re3W.
    In this paper,point-contact Andreev reflection experiments are carried out on Re3W/Au and the data can be well fitted by isotropic s-wave Blonder-Tinkham-Klapwijk (BTK) theory.In combination with our previous researches,we find that both centrosymmetric and non-centrosymmetric phases have similar temperature dependence of superconducting gap () with almost the same gap ratio of /Tc.These results present strong evidence that both phases of Re3W are weak coupling Bardeen-Cooper-Schrieffer superconductors.
    Another interesting finding is that both phases of Re3W could easily form an ideal point-contact junction (i.e.,inelastic scatterings at the interface can be ignored) with a normal metal tip.This is manifested as an extremely small broadening factor (Γ) used in the fitting process,and indicates a clean (and possibly transparent) interface.Keeping this in mind,we can assume that the effective barrier (Z) at the interface mainly comes from the mismatch between the Fermi velocity of the superconductor and that of the normal metal,which can be estimated from the formula Z2=(1-r)2/4r,where r is the ratio between those two Fermi velocities.From this formula,we can obtain the Fermi velocity of Re3W by using the known value of Au's Fermi velocity and the fitting parameter Z for the Re3W/Au point contacts.It is interesting to find that the chemical property of Re3W is stable in the atmospheric environment.Even if the samples are exposed to the atmospheric environment for nearly six months,the inelastic scatterings are still very weak,and the superconducting properties are unchanged.
    Such an exceptional performance of Re3W can be utilized to study the physical properties of its counter electrode in a point contact.As an attempt,we build a point contact between Re3W and a ferromagnetic Ni tip,and measure its Andreev reflection spectra which are then fitted with a modified BTK model by considering spin polarization.The determined spin polarization of Ni is in good agreement with previously reported result. Moreover,using the Fermi velocities of Re3W and Ni,we can calculate the effective barrier to be around 0.3 in the Re3W/Ni interface,which coincides with the fitting parameter Z.These results self-consistently demonstrate the validity of the determination of Re3W's Fermi velocity and the cleanness/transparency of the studied point-contact interface.
    [1]

    Bauer E, Hilscher G, Michor H, Paul C, Scheidt E W, Gribanov A, Seropegin Y, Noël H, Sigrist M, Rogl P 2004 Phys. Rev. Lett. 92 027003

    [2]

    Gor'kov L P, Rashba E I 2001 Phys. Rev. Lett. 87 037004

    [3]

    Frigeri P A, Agterberg D F, Koga A, Sigrist M 2004 Phys. Rev. Lett. 92 097001

    [4]

    Bauer E, Sigrist M 2012 Non-Centrosymmetric Superconductors: Introduction and Overview (Berlin Heidelberg: Springer Verlag) pp4-5

    [5]

    Izawa K, Kasahara Y, Matsuda Y, Behnia K, Yasuda T, Settai R, Onuki Y 2005 Phys. Rev. Lett. 94 197002

    [6]

    Bonalde I, Brämer-Escamilla W, Bauer E 2005 Phys. Rev. Lett. 94 207002

    [7]

    Yuan H Q, Agterberg D F, Hayashi N, Badica P, Vandervelde D, Togano K, Sigrist M, Salamon M B 2006 Phys. Rev. Lett. 97 017006

    [8]

    Sato M, Fujimoto S 2009 Phys. Rev. B 79 094504

    [9]

    Chadov S, Qi X L, Kübler J, Fecher G H, Felser C, Zhang S C 2010 Nat. Mater. 9 541

    [10]

    Blaugher R D, Hulm J K 1961 J. Phys. Chem. Solids 19 134

    [11]

    Blaugher R D, Taylor A, Hulm J K 1962 IBM J. Res. Dev. 6 116

    [12]

    Zuev Y L, Kuznetsova V A, Prozorov R, Vannette M D, Lobanov M V, Christen D K, Thompson J R 2007 Phys. Rev. B 76 132508

    [13]

    Huang Y, Yan J, Wang Y L, Shan L, Luo Q, Wang W H, Wen H H 2008 Supercond. Sci. Technol. 21 075011

    [14]

    Blonder G E, Tinkham M, Klapwijk T M 1982 Phys. Rev. B 25 4515

    [15]

    Biswas P K, Lees M R, Hillier A D, Smith R I, Marshall W G, Paul D M 2011 Phys. Rev. B 84 184529

    [16]

    Chu C W, McMillan W L, Luo H L 1971 Phys. Rev. B 3 3757

    [17]

    Dynes R C, Narayanamurti V, Garno J P 1978 Phys. Rev. Lett. 41 1509

    [18]

    Dynes R C, Garno J P, Hertel G B, Orlando T P 1984 Phys. Rev. Lett. 53 2437

    [19]

    Plecenik A, Grajcar M, Beňačka Š, Seidel P, Pfuch A 1994 Phys. Rev. B 49 10016

    [20]

    Soulen R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A, Coey J M D 1998 Science 282 85

    [21]

    Nadgorny B, Soulen Jr R J, Osofsky M S, Mazin I I, Laprade G, van de Veerdonk R J M, Smits A A, Cheng S F, Skelton E F, Qadri S B 2000 Phys. Rev. B 61 3788

    [22]

    Ji Y, Strijkers G J, Yang F Y, Chien C L, Byers J M, Anguelouch A, Xiao G, Gupta A 2001 Phys. Rev. Lett. 86 5585

    [23]

    Panguluri R P, Tsoi G, Nadgorny B, Chun S H, Samarth N, Mazin I I 2003 Phys. Rev. B 68 201307

    [24]

    Clowes S K, Miyoshi Y, Bugoslavsky Y, Branford W R, Grigorescu C, Manea S A, Monnereau O, Cohen L F 2004 Phys. Rev. B 69 214425

    [25]

    Biswas P K, Hillier A D, Lees M R, Paul D M 2012 Phys. Rev. B 85 134505

    [26]

    Daghero D, Gonnelli R S 2010 Supercond. Sci. Technol. 23 043001

    [27]

    Gall D 2016 J. Appl. Phys. 119 85101

    [28]

    Mazin I I, Golubov A A, Nadgorny B 2001 J. Appl. Phys. 89 7576

    [29]

    Moodera J S, Mathon G 1999 J. Magn. Magn. Mater. 200 248

    [30]

    Strijkers G J, Ji Y, Yang F Y, Chien C L, Byers J M 2001 Phys. Rev. B 63 104510

  • [1]

    Bauer E, Hilscher G, Michor H, Paul C, Scheidt E W, Gribanov A, Seropegin Y, Noël H, Sigrist M, Rogl P 2004 Phys. Rev. Lett. 92 027003

    [2]

    Gor'kov L P, Rashba E I 2001 Phys. Rev. Lett. 87 037004

    [3]

    Frigeri P A, Agterberg D F, Koga A, Sigrist M 2004 Phys. Rev. Lett. 92 097001

    [4]

    Bauer E, Sigrist M 2012 Non-Centrosymmetric Superconductors: Introduction and Overview (Berlin Heidelberg: Springer Verlag) pp4-5

    [5]

    Izawa K, Kasahara Y, Matsuda Y, Behnia K, Yasuda T, Settai R, Onuki Y 2005 Phys. Rev. Lett. 94 197002

    [6]

    Bonalde I, Brämer-Escamilla W, Bauer E 2005 Phys. Rev. Lett. 94 207002

    [7]

    Yuan H Q, Agterberg D F, Hayashi N, Badica P, Vandervelde D, Togano K, Sigrist M, Salamon M B 2006 Phys. Rev. Lett. 97 017006

    [8]

    Sato M, Fujimoto S 2009 Phys. Rev. B 79 094504

    [9]

    Chadov S, Qi X L, Kübler J, Fecher G H, Felser C, Zhang S C 2010 Nat. Mater. 9 541

    [10]

    Blaugher R D, Hulm J K 1961 J. Phys. Chem. Solids 19 134

    [11]

    Blaugher R D, Taylor A, Hulm J K 1962 IBM J. Res. Dev. 6 116

    [12]

    Zuev Y L, Kuznetsova V A, Prozorov R, Vannette M D, Lobanov M V, Christen D K, Thompson J R 2007 Phys. Rev. B 76 132508

    [13]

    Huang Y, Yan J, Wang Y L, Shan L, Luo Q, Wang W H, Wen H H 2008 Supercond. Sci. Technol. 21 075011

    [14]

    Blonder G E, Tinkham M, Klapwijk T M 1982 Phys. Rev. B 25 4515

    [15]

    Biswas P K, Lees M R, Hillier A D, Smith R I, Marshall W G, Paul D M 2011 Phys. Rev. B 84 184529

    [16]

    Chu C W, McMillan W L, Luo H L 1971 Phys. Rev. B 3 3757

    [17]

    Dynes R C, Narayanamurti V, Garno J P 1978 Phys. Rev. Lett. 41 1509

    [18]

    Dynes R C, Garno J P, Hertel G B, Orlando T P 1984 Phys. Rev. Lett. 53 2437

    [19]

    Plecenik A, Grajcar M, Beňačka Š, Seidel P, Pfuch A 1994 Phys. Rev. B 49 10016

    [20]

    Soulen R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A, Coey J M D 1998 Science 282 85

    [21]

    Nadgorny B, Soulen Jr R J, Osofsky M S, Mazin I I, Laprade G, van de Veerdonk R J M, Smits A A, Cheng S F, Skelton E F, Qadri S B 2000 Phys. Rev. B 61 3788

    [22]

    Ji Y, Strijkers G J, Yang F Y, Chien C L, Byers J M, Anguelouch A, Xiao G, Gupta A 2001 Phys. Rev. Lett. 86 5585

    [23]

    Panguluri R P, Tsoi G, Nadgorny B, Chun S H, Samarth N, Mazin I I 2003 Phys. Rev. B 68 201307

    [24]

    Clowes S K, Miyoshi Y, Bugoslavsky Y, Branford W R, Grigorescu C, Manea S A, Monnereau O, Cohen L F 2004 Phys. Rev. B 69 214425

    [25]

    Biswas P K, Hillier A D, Lees M R, Paul D M 2012 Phys. Rev. B 85 134505

    [26]

    Daghero D, Gonnelli R S 2010 Supercond. Sci. Technol. 23 043001

    [27]

    Gall D 2016 J. Appl. Phys. 119 85101

    [28]

    Mazin I I, Golubov A A, Nadgorny B 2001 J. Appl. Phys. 89 7576

    [29]

    Moodera J S, Mathon G 1999 J. Magn. Magn. Mater. 200 248

    [30]

    Strijkers G J, Ji Y, Yang F Y, Chien C L, Byers J M 2001 Phys. Rev. B 63 104510

  • [1] He Ya-Ping, Chen Ming-Xia, Pan Jie-Feng, Li Dong, Lin Gang-Jun, Huang Xin-Hong. Electron-spin polarization effect in Rashba spin-orbit coupling modulated single-layered semiconductor nanostructure. Acta Physica Sinica, 2023, 72(2): 028503. doi: 10.7498/aps.72.20221381
    [2] Yu Xiao-Yang, Feng Hong-Lei, Gu Gang-Xu, Liu Yong-He, Li Zhi-Lin, Xu Tong-Shuai, Li Yong-Qing. Andreev reflection spectroscopy of ferromagnetic Fe0.26TaS2 with layered structure. Acta Physica Sinica, 2019, 68(24): 247201. doi: 10.7498/aps.68.20191221
    [3] Gong Dong-Liang, Luo Hui-Qian. Antiferromagnetic order and spin dynamics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [4] Jiang Li-Na, Zhang Yu-Bin, Dong Shun-Le. Effect of bipolarons on spin polarized transport in magnetic permeated sublayer of organic spin device. Acta Physica Sinica, 2015, 64(14): 147104. doi: 10.7498/aps.64.147104
    [5] Zhang Jing-Lei, Jiao Lin, Pang Gui-Ming, Yuan Hui-Qiu. Order parameters of non-centrosymmetric superconductors. Acta Physica Sinica, 2015, 64(21): 217403. doi: 10.7498/aps.64.217403
    [6] Wang Rui-Qin, Gong Jian, Wu Jian-Ying, Chen Jun. Time of spin-polarized tunneling through a symmetric double-barrier quantum well structure. Acta Physica Sinica, 2013, 62(8): 087303. doi: 10.7498/aps.62.087303
    [7] He Zhi-Gang, Cheng Xing-Hua, Gong Min, Cai Juan-Lu, Shi Rui-Ying. The factors influencing spin-polarized transport in magnetic pn junction. Acta Physica Sinica, 2010, 59(9): 6521-6526. doi: 10.7498/aps.59.6521
    [8] Dong Zheng-Chao. Spin-polarized transport in ferromagnetic semiconductor/ferromagnetic d-wave superconductor tunnel junction. Acta Physica Sinica, 2008, 57(9): 5937-5943. doi: 10.7498/aps.57.5937
    [9] Li Zheng, Luo Jian-Lin. Superconducting proprties of noncentrosymmetric Mg10±δIr19B16?δ. Acta Physica Sinica, 2008, 57(7): 4508-4511. doi: 10.7498/aps.57.4508
    [10] Xu Min, Zhang Yue-Heng, Shen Wen-Zhong. Reflectivity and phase shift of semiconductor far-infrared mirrors. Acta Physica Sinica, 2007, 56(4): 2415-2421. doi: 10.7498/aps.56.2415
    [11] Ren Jun-Feng, Zhang Yu-Bin, Xie Shi-Jie. Current spin polarization in ferromagnetic/organic semiconductor/ferromagnetic system. Acta Physica Sinica, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [12] Li Tong-Cang, Liu Zhi-Jing, Wang Ke-Yi. Calculations of the spin-polarization of the electronic current injected from a ferromagnetic metal into a semiconductor. Acta Physica Sinica, 2003, 52(11): 2912-2917. doi: 10.7498/aps.52.2912
    [13] Yu Min, Yang Hong-Shun, Cai Yi-Sheng, Ruan Ke-Qing, Li Peng-Cheng, Li Zhi-Quan, Chen Zhao-Jia, Cao Lie-Zhao. . Acta Physica Sinica, 2002, 51(3): 674-678. doi: 10.7498/aps.51.674
    [14] YANG HONG-SHUN, YU MIN, LI SHI-YAN, LI PENG-CHENG, CHAI YI SHENG, ZHANG LIANG, CHEN XIAN-HUI, CAO LIE-ZHAO. STUDY ON THE THERMOPOWER AND RESISTIVITY OF A NEW SUPERCONDUCTOR MgB2. Acta Physica Sinica, 2001, 50(6): 1197-1200. doi: 10.7498/aps.50.1197
    [15] YANG XIANG-BO, LIU YOU-YAN. ELECTRONIC PROPERTIES OF Ni-Cr QUASILATTICE WITHOUT CENTRAL ROTATIONAL SYMMETRY. Acta Physica Sinica, 1994, 43(3): 416-423. doi: 10.7498/aps.43.416
    [16] GUO QI, REN ZHAN-MEI, LIAO CHANG-JUN, LIU SONG-HAO. SOLITON PROPAGATION IN OPTICAL WAVEGUIDES MADE OF MEDIA WITH NON-CENTRAL SYMMETRY. Acta Physica Sinica, 1992, 41(7): 1097-1105. doi: 10.7498/aps.41.1097
    [17] DING SHANG-WU, HOU LEI. POSSIBILITY OF BIPOLARONIC EXPLANATION FOR HIGH TEMPERATURE SUPERCONDUCTING TERNARY METAL OXIDE. Acta Physica Sinica, 1988, 37(7): 1180-1182. doi: 10.7498/aps.37.1180
    [18] TANG HUI, ZHANG LI-YUAN. THE PROXIMITY EFFECT BETWEEN A NONSIMPLE METAL WITH-U CENTERS AND A BCS SUPERCONDUCTOR (Ⅱ). Acta Physica Sinica, 1985, 34(1): 97-104. doi: 10.7498/aps.34.97
    [19] ZHANG LI-YUAN. THE PROXIMITY EFFECT BETWEEN A NONSIMPLE METAL WITH-U CENTERS AND A BCS SUPERCONDUCTOR (I). Acta Physica Sinica, 1983, 32(11): 1435-1442. doi: 10.7498/aps.32.1435
    [20] FAN HAI-FU, GU YUAN-XIN, XU ZHANG-BAO. ARTIFICIAL PHASE DEGENERATION IN THE DETERMINATION OF NON-CENTROSYMMETRIC STRUCTURES. Acta Physica Sinica, 1981, 30(12): 1582-1585. doi: 10.7498/aps.30.1582
Metrics
  • Abstract views:  6137
  • PDF Downloads:  113
  • Cited By: 0
Publishing process
  • Received Date:  09 November 2018
  • Accepted Date:  22 November 2018
  • Published Online:  05 January 2019

/

返回文章
返回