Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Combined dual-wavelength laser diode beam end-pumped single longitudinal mode Pr3+:LiYF4 360 nm ultraviolet laser

Dou Wei Pu Shuang-Shuang Niu Na Qu Da-Peng Meng Xiang-Jun Zhao Ling Zheng Quan

Citation:

Combined dual-wavelength laser diode beam end-pumped single longitudinal mode Pr3+:LiYF4 360 nm ultraviolet laser

Dou Wei, Pu Shuang-Shuang, Niu Na, Qu Da-Peng, Meng Xiang-Jun, Zhao Ling, Zheng Quan
PDF
HTML
Get Citation
  • In recent years, all-solid-state ultraviolet lasers have had widely potential applications in the fields of spectroscopy, biological analysis, precision manufacturing, optical data storage, high-resolution printing, medicine and lithography. The good monochrome of all-solid-state ultraviolet laser can improve the accuracy of spectral absorption measurement when used to detect specific proteins and reduce the laser spot diameter when used for high density data storage or acousto-optic deflector. In this paper, a combined dual-wavelength laser diode (LD) beam end-pumped single longitudinal mode Pr3+:LiYF4 all-solid-state UV laser at 360 nm is presented. A V-folded cavity structure is used in the laser, which consists of a reflective volume Bragg grating (RBG) and a Fabry-Perot (F-P) etalon. The RBG is used as a wavelength selection and resonator reflector to narrow the width of spectral line. The F-P etalon is hybrid in the cavity, serving as a narrow-band filter, to achieve the single longitudinal mode. The lithium triborate crystal with critical type-I phase matching at room temperature is used for implementing the second-harmonic generation of the fundamental 720 nm laser and obtaining an efficient and compact ultraviolet laser at 360 nm. The optical resonator is simulated and analyzed by MATLAB software. Two experiments are conducted to compare the accuracy of central wavelength tuning by changing the temperature of F-P etalon and the angle of F-P etalon. The result shows that the change temperature of F-P etalon can achieve 0.165 pm/℃, showing that it is a better method. The structure of the laser is simplified and the anti-interference capability is improved in this way. It is different from mode competition method and the stability of single longitudinal mode laser output is increased. When the output power of LD at 444 nm is 1200 mW and that of LD at 469 nm is 1400 mW, a single longitudinal mode CW UV laser at 360 nm with output power as high as 112 mW is achieved. The optical-to-optical conversion efficiency is 4.3%, and the longitudinal linewidth of laser is 30 MHz. The measurements show that the edge suppression ratio is greater than 60 dB, the stability of root mean square (RMS) of output power in 4 h is better than 0.5%, the frequency shift in 1h is better than 220 MHz, and amplitude noise is less than 0.5%.
      Corresponding author: Dou Wei, douwei@cnilaser.com
    [1]

    Chen M, Wang Z C, Wang B S, Yang F, Zhang G C, Zhang S J, Zhang F F, Zhang X W, Zong N, Wang Z M, Bo Y, Peng Q J, Cui D F, Wu Y C, Xu Z Y 2016 J. Lumin. 172 254Google Scholar

    [2]

    毛叶飞, 张恒利, 徐浏, 邓波, 桑思晗, 何京良, 邢冀川, 辛建国, 江毅 2015 物理学报 64 014203Google Scholar

    Mao Y F, Zhang H L, Xu L, Deng B, Sang S H, He J L, Xing J C, Xin J G, Jiang Y 2015 Acta Phys. Sin. 64 014203Google Scholar

    [3]

    Mao Y F, Zhang H L, Sang S H, Zhang X, Yu X L, Xing J C, Xin J G, Jiang Y 2015 Chin. Phys. Lett. 32 094201-1

    [4]

    Cai Z P, Qu B, Cheng Y J, Luo S Y, Xu B, Xu H Y, Luo Z Q, Camy P, Doualan J L, Moncorgé R 2014 Opt. Express 22 31722Google Scholar

    [5]

    Camy P, Xu B, Doualan J L, Moncorgé R 2011 Advanced Solid-State Photonics Istanbul, Turkey, February 13−16, 2011 pATuB10

    [6]

    Luo S Y, Yan X G, Xu B, Xiao L P, Xu H, Cai Z P, Weng J 2018 Opt. Commun. 406 61Google Scholar

    [7]

    刘哲 2013 博士学位论文 (福建: 厦门大学)

    Liu Z 2013 Ph. D. Dissertation (Fujian: Xiamen University) (in Chinese)

    [8]

    Akbari R, Major A 2013 Laser Phys. 23 035401Google Scholar

    [9]

    Ostroumov V, Seelert W, Hunziker L, Ihli C, Richter A, Heumann E, Huber G 2007 Solid State Lasers XVI: Technology and Devices San Jose, USA, January 22−25, 2007 p645103-1

    [10]

    Zhang C M, Yu W X, Zhang C G, Yao Y, Zhu P F, Song P, Bai L 2015 Opt. Spectrosc. 118 998Google Scholar

    [11]

    Tu X, Wu X, Li M, Liu L Y, Xu L 2012 Opt. Express 20 19996Google Scholar

    [12]

    谢仕永, 张小富, 杨程亮, 乐小云, 薄勇, 崔大复, 许祖彦 2016 物理学报 65 094203Google Scholar

    Xie S Y, Zhang X F, Yang C L, Le X Y, Bo Y, Cui D F, Xu Z Y 2016 Acta Phys. Sin. 65 094203Google Scholar

    [13]

    George J, Oak S M, Singh B P 2010 Opt. Laser Technol. 42 192Google Scholar

    [14]

    Yao B, Jing W, Dai T, Ju Y, Wang Y 2017 Opt. Express 25 27671Google Scholar

    [15]

    Nunez P M, Wetter N U, Zondy J J, Cruz F C 2013 Laser Phys. 23 025801Google Scholar

    [16]

    Li J, Yang S, Zhao C, Zhang H, Xie W 2010 Opt. Express 18 12161Google Scholar

    [17]

    Dai T Y, Wu J, Ju L, Zhang Z G, Xu L W, Yao B Q, Wang Y Z 2016 Infrared Phys. Technol. 77 149Google Scholar

    [18]

    Qian L M, Ren D M, Zhao W J, Liu Y Y, Qu Y C, Bai Y, Chen Z L 2012 Laser Phys. 22 708Google Scholar

    [19]

    Shie N C, Hsieh W F, Shy J T 2011 Opt. Express 19 21109Google Scholar

    [20]

    白扬博, 向望华, 祖鹏, 张贵忠 2012 物理学报 61 214208Google Scholar

    Bai Y B, Xiang W H, Zu P, Zhang G Z 2012 Acta Phys. Sin. 61 214208Google Scholar

    [21]

    Qu B, Xu B, Luo S, Cheng Y, Xu H, Cai Z, Camy P, Doualan J, Moncorgé R 2015 IEEE Photon. Technol. Lett. 27 333Google Scholar

    [22]

    Xu B, Liu Z, Xu H, Cai Z, Zeng C, Huang S, Yan Y, Wang F, Camy P, Doualan J L, Braud A, Moncorgé R 2013 Opt. Commun. 305 96Google Scholar

    [23]

    Luo S, Yan X, Cui Q, Xu B, Xu H, Cai Z 2016 Opt. Commun. 380 357Google Scholar

    [24]

    Fibrich M, Šulc J, Jelínková H 2016 Solid State Lasers XXV: Technology and Devices San Francisco, United States, February 15−18, 2016 p97261E-1

    [25]

    Fibrich M, Jelínková H, Šulc J, Nejezchleb K, Škoda V 2010 Solid State Lasers XIX: Technology and Devices San Francisco, United States, February 15−18, 2010 p757828-1

    [26]

    Gün T, Metz P, Huber G 2011 Appl. Phys. Lett. 99 92

    [27]

    Metz P W, Reichert F, Moglia F, Müller S, Marzahl D T, Kränkel C, Huber G 2014 Opt. Lett. 39 3193Google Scholar

    [28]

    Liu Z, Cai Z P, Huang S L, Zeng C H, Meng Z Y, Bu Y K, Luo Z Q, Xu B, Xu H Y, Ye C C, Stareki F, Camy P, Moncorgé R 2013 J. Opt. Soc. Am. B 30 302Google Scholar

  • 图 1  选模原理图

    Figure 1.  Principle of the longitudinal mode selection.

    图 2  Pr3+:LiYF4晶体对444 nm和469 nm以及两者加和的吸收效率曲线

    Figure 2.  Absorption efficiency curves of Pr3+:LiYF4 crystal for 444 nm LD and 469 nm LD and their hybrid.

    图 3  全固态单纵模360 nm紫外激光器

    Figure 3.  All solid state single longitudinal mode 360 nm UV laser.

    图 4  选模装置 (a) F-P标准具控温装置; (b) F-P标准具角度变换装置

    Figure 4.  Longitudinal mode selection device: (a) Temperature control device for F-P etalon; (b) control device for F-P etalon angle.

    图 5  谐振腔稳定性分析 (a) 晶体热焦距Rth取300 mm时, 腔内两个束腰半径模拟图; (b) 谐振腔稳定参数G随热焦距Rth的变化

    Figure 5.  Stability analysis of optical resonator: (a) Simulation ofbeam waist radii inside Pr3+:LiYF4 and LBO in the resonant cavity when the thermal focal length is 300 mm; (b) the variation curve of the stability parameter G of the resonator with the thermal focal length of the crystal.

    图 6  晶体热焦距Rth分别为200, 300, 400 mm时, Pr3+:LiYF4和LBO晶体内束腰半径随着LBO晶体与M1之间距离的变化情况

    Figure 6.  The beam waist radii inside Pr3+:LiYF4 and LBO of the resonator vary with the distance between M1 and the LBO crystal when thermal focal length of the crystal is 200, 300 and 400 mm.

    图 7  720 nm激光中心波长调谐 (a) 中心波长随F-P标准具温度及厚度的变化; (b) 中心波长随PZT电压及F-P标准具角度的变化

    Figure 7.  Tuning of 720 nm laser center wavelength: (a) The central wavelength vary with the temperature and thickness of F-P etalon; (b) the central wavelength vary with the angle of the PZT voltage and F-P etalon.

    图 8  360 nm单纵模激光输出功率相对于入射抽运功率 (444 nm与469 nm合束) 的变化

    Figure 8.  Variation curve of output power of single longitudinal mode 360 nm laser with respect to pump power (combining LD @ 444 nm and LD @ 469 nm).

    图 10  光束质量M2因子

    Figure 10.  M2 factor of laser beam.

    图 9  远场光斑

    Figure 9.  Farfield laser facular profile.

    图 12  360 nm激光光谱

    Figure 12.  Spectrum of the single longitudinal mode 360 nm UV laser.

    图 11  中心频率及其稳定性

    Figure 11.  Center frequency and its stability.

    表 1  Pr3+:LiYF4晶体蓝光波段峰值吸收截面(室温)

    Table 1.  Peak absorption cross section of blue light in Pr3+:LiYF4 crystal (room temperature).

    Peak wavelength $\lambda $/nmAbsorption cross section ${\sigma _{\rm{a}}}$/10-20 cm2PolarizationCorresponding transitionLine width/nm
    4449.0${\text{π}}$3H43P21.8
    4696.5${\text{π}}$3H43P1+1I60.9
    47921.7${\text{π}}$3H43P00.5
    DownLoad: CSV
  • [1]

    Chen M, Wang Z C, Wang B S, Yang F, Zhang G C, Zhang S J, Zhang F F, Zhang X W, Zong N, Wang Z M, Bo Y, Peng Q J, Cui D F, Wu Y C, Xu Z Y 2016 J. Lumin. 172 254Google Scholar

    [2]

    毛叶飞, 张恒利, 徐浏, 邓波, 桑思晗, 何京良, 邢冀川, 辛建国, 江毅 2015 物理学报 64 014203Google Scholar

    Mao Y F, Zhang H L, Xu L, Deng B, Sang S H, He J L, Xing J C, Xin J G, Jiang Y 2015 Acta Phys. Sin. 64 014203Google Scholar

    [3]

    Mao Y F, Zhang H L, Sang S H, Zhang X, Yu X L, Xing J C, Xin J G, Jiang Y 2015 Chin. Phys. Lett. 32 094201-1

    [4]

    Cai Z P, Qu B, Cheng Y J, Luo S Y, Xu B, Xu H Y, Luo Z Q, Camy P, Doualan J L, Moncorgé R 2014 Opt. Express 22 31722Google Scholar

    [5]

    Camy P, Xu B, Doualan J L, Moncorgé R 2011 Advanced Solid-State Photonics Istanbul, Turkey, February 13−16, 2011 pATuB10

    [6]

    Luo S Y, Yan X G, Xu B, Xiao L P, Xu H, Cai Z P, Weng J 2018 Opt. Commun. 406 61Google Scholar

    [7]

    刘哲 2013 博士学位论文 (福建: 厦门大学)

    Liu Z 2013 Ph. D. Dissertation (Fujian: Xiamen University) (in Chinese)

    [8]

    Akbari R, Major A 2013 Laser Phys. 23 035401Google Scholar

    [9]

    Ostroumov V, Seelert W, Hunziker L, Ihli C, Richter A, Heumann E, Huber G 2007 Solid State Lasers XVI: Technology and Devices San Jose, USA, January 22−25, 2007 p645103-1

    [10]

    Zhang C M, Yu W X, Zhang C G, Yao Y, Zhu P F, Song P, Bai L 2015 Opt. Spectrosc. 118 998Google Scholar

    [11]

    Tu X, Wu X, Li M, Liu L Y, Xu L 2012 Opt. Express 20 19996Google Scholar

    [12]

    谢仕永, 张小富, 杨程亮, 乐小云, 薄勇, 崔大复, 许祖彦 2016 物理学报 65 094203Google Scholar

    Xie S Y, Zhang X F, Yang C L, Le X Y, Bo Y, Cui D F, Xu Z Y 2016 Acta Phys. Sin. 65 094203Google Scholar

    [13]

    George J, Oak S M, Singh B P 2010 Opt. Laser Technol. 42 192Google Scholar

    [14]

    Yao B, Jing W, Dai T, Ju Y, Wang Y 2017 Opt. Express 25 27671Google Scholar

    [15]

    Nunez P M, Wetter N U, Zondy J J, Cruz F C 2013 Laser Phys. 23 025801Google Scholar

    [16]

    Li J, Yang S, Zhao C, Zhang H, Xie W 2010 Opt. Express 18 12161Google Scholar

    [17]

    Dai T Y, Wu J, Ju L, Zhang Z G, Xu L W, Yao B Q, Wang Y Z 2016 Infrared Phys. Technol. 77 149Google Scholar

    [18]

    Qian L M, Ren D M, Zhao W J, Liu Y Y, Qu Y C, Bai Y, Chen Z L 2012 Laser Phys. 22 708Google Scholar

    [19]

    Shie N C, Hsieh W F, Shy J T 2011 Opt. Express 19 21109Google Scholar

    [20]

    白扬博, 向望华, 祖鹏, 张贵忠 2012 物理学报 61 214208Google Scholar

    Bai Y B, Xiang W H, Zu P, Zhang G Z 2012 Acta Phys. Sin. 61 214208Google Scholar

    [21]

    Qu B, Xu B, Luo S, Cheng Y, Xu H, Cai Z, Camy P, Doualan J, Moncorgé R 2015 IEEE Photon. Technol. Lett. 27 333Google Scholar

    [22]

    Xu B, Liu Z, Xu H, Cai Z, Zeng C, Huang S, Yan Y, Wang F, Camy P, Doualan J L, Braud A, Moncorgé R 2013 Opt. Commun. 305 96Google Scholar

    [23]

    Luo S, Yan X, Cui Q, Xu B, Xu H, Cai Z 2016 Opt. Commun. 380 357Google Scholar

    [24]

    Fibrich M, Šulc J, Jelínková H 2016 Solid State Lasers XXV: Technology and Devices San Francisco, United States, February 15−18, 2016 p97261E-1

    [25]

    Fibrich M, Jelínková H, Šulc J, Nejezchleb K, Škoda V 2010 Solid State Lasers XIX: Technology and Devices San Francisco, United States, February 15−18, 2010 p757828-1

    [26]

    Gün T, Metz P, Huber G 2011 Appl. Phys. Lett. 99 92

    [27]

    Metz P W, Reichert F, Moglia F, Müller S, Marzahl D T, Kränkel C, Huber G 2014 Opt. Lett. 39 3193Google Scholar

    [28]

    Liu Z, Cai Z P, Huang S L, Zeng C H, Meng Z Y, Bu Y K, Luo Z Q, Xu B, Xu H Y, Ye C C, Stareki F, Camy P, Moncorgé R 2013 J. Opt. Soc. Am. B 30 302Google Scholar

  • [1] Xu Ping, Li Xiong-Chao, Xiao Yu-Fei, Yang Tuo, Zhang Xu-Lin, Huang Hai-Xuan, Wang Meng-Yu, Yuan Xia, Xu Hai-Dong. Design and research of long-infrared dual-wavelength confocal metalens. Acta Physica Sinica, 2023, 72(1): 014208. doi: 10.7498/aps.72.20221752
    [2] Shen Xiao-Hong, Zeng Ying-Ying, Mao Lin, Zhu Ren-Jiang, Wang Tao, Luo Hai-Jun, Tong Cun-Zhu, Wang Li-Jie, Song Yan-Rong, Zhang Peng. Dual-wavelength self-mode-locked semiconductor disk laser. Acta Physica Sinica, 2022, 71(20): 204202. doi: 10.7498/aps.71.20220483
    [3] Xu Ping, Xiao Yu-Fei, Huang Hai-Xuan, Yang Tuo, Zhang Xu-Lin, Yuan Xia, Li Xiong-Chao, Wang Meng-Yu, Xu Hai-Dong. A new method of implementing simultaneous multiplexing holographic display of wavelength and polarization state with simple structure metasurface. Acta Physica Sinica, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [4] Yu Qiang, Guo Kun, Chen Jie, Wang Tao, Wang Jin, Shi Xin-Yao, Wu Jian, Zhang Kai, Zhou Pu. Dual-wavelength self-starting mode-locking Er-doped fiber laser with MnPS3 saturable absorber. Acta Physica Sinica, 2020, 69(18): 184208. doi: 10.7498/aps.69.20200342
    [5] Qiu Xiao-Lang, Wang Shuang-Shuang, Zhang Xiao-Jian, Zhu Ren-Jiang, Zhang Peng, Guo-Yu He-Yang, Song Yan-Rong. Dual-wavelength external-cavity surface-emitting laser. Acta Physica Sinica, 2019, 68(11): 114204. doi: 10.7498/aps.68.20182261
    [6] Dai Shu-Tao, Jiang Tao, Wu Li-Xia, Wu Hong-Chun, Lin Wen-Xiong. Single-axial-mode Nd:YAG laser with precisely controllable laser pulse output time. Acta Physica Sinica, 2019, 68(13): 134202. doi: 10.7498/aps.68.20190393
    [7] Peng Wan-Jing, Liu Peng. Continuously spacing-tunable dual-wavelength erbium-doped fiber laser based on polarization-dependent in-line multimode-single-mode-multimode fiber filter. Acta Physica Sinica, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [8] Liao Yu, Jian Xiao-Hua, Cui Yao-Yao, Zhang Qi. Photoacoustic temperature measurement based on dual-wavelength method. Acta Physica Sinica, 2017, 66(11): 117802. doi: 10.7498/aps.66.117802
    [9] Sun Wu, Deng Xiao-Jiu, Li Yao-Dong, Zhang Yong-Ming, Zheng Sai-Jing, Wang Wei-Miao. Mechanism of dual-wavelength anti-jamming photoelectric smoke-detection. Acta Physica Sinica, 2013, 62(3): 030201. doi: 10.7498/aps.62.030201
    [10] Li Zhi-Cheng, Liu Bin, Zhang Rong, Zhang Zhao, Tao Tao, Xie Zi-Li, Chen Peng, Jiang Ruo-Lian, Zheng You-Dou, Ji Xiao-Li. Design and fabrication of SiO2/Si3N4 dielectric distributed Bragg reflectors for ultraviolet optoelectronic applications. Acta Physica Sinica, 2012, 61(8): 087802. doi: 10.7498/aps.61.087802
    [11] Weng Yong-Chao, Kuang Long-Yu, Gao Nan, Cao Lei-Feng, Zhu Xiao-Li, Wang Xiao-Hua, Xie Chang-Qing. Reflection type single-order diffraction grating. Acta Physica Sinica, 2012, 61(15): 154203. doi: 10.7498/aps.61.154203
    [12] Du Wen-Bo, Leng Jin-Yong, Zhu Jia-Jian, Zhou Pu, Xu Xiao-Jun, Shu Bo-Hong. Theoretical study of two-tone single frequency fiber amplifier with gain competition. Acta Physica Sinica, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [13] Guan Bao-Lu, Guo Xia, Zhang Jing-Lan, Ren Xiu-Juan, Guo Shuai, Li Shuo, Chuai Dong-Xu, Shen Guang-Di. Characteristics of dual-wavelength vertical-cavitysurface-emitting lasers. Acta Physica Sinica, 2011, 60(1): 014209. doi: 10.7498/aps.60.014209
    [14] Lin Yan-Feng, Zhang Ge, Zhu Hai-Yong, Huang Cheng-Hui, Li Ai-Hong, Wei Yong. Mechanism of dual-wavelength oscillation in Nd:YAG Q-switched laser. Acta Physica Sinica, 2009, 58(6): 3909-3914. doi: 10.7498/aps.58.3909
    [15] Ren Wen-Hua, Wang Yan-Hua, Feng Su-Chun, Tan Zhong-Wei, Liu Yan, Jian Shui-Sheng. A study on the interval between longitudinal modes of Fabry-Perot cavity composed of fiber Bragg gratings. Acta Physica Sinica, 2008, 57(12): 7758-7764. doi: 10.7498/aps.57.7758
    [16] Gu Xiao-Ling, Guo Xia, Liang Ting, Lin Qiao-Ming, Guo Jing, Wu Di, Xu Li-Hua, Shen Guang-Di. The electroluminescence spectra of dual wavelength GaN-based light emitting diodes. Acta Physica Sinica, 2007, 56(9): 5531-5535. doi: 10.7498/aps.56.5531
    [17] Tian Jian-Feng, Wu Zheng-Mao, Xia Guang-Qiong. Influence of introducing chirp on bistable characteristics of linear negative tapered Bragg gratings. Acta Physica Sinica, 2006, 55(12): 6419-6423. doi: 10.7498/aps.55.6419
    [18] Lü Chang-Gui, Cui Yi-Ping, Wang Zhu-Yuan, Yun Bin-Feng. A study on the longitudinal mode behavior of Fabry-Perot cavity composed of fiber Bragg grating. Acta Physica Sinica, 2004, 53(1): 145-150. doi: 10.7498/aps.53.145
    [19] SONG ZENG-FU, LIA SHO-REN, GUI YOU-XI, JIANG JIE, HUA DAO-HONG, WANG SHU-KUN, HUO YU-TAI. THE ELECTRONIC RAMAN SCATTERING AND TWO-PHOTON FLOURESCENCE IN LiYF4:Nd3+. Acta Physica Sinica, 1984, 33(7): 1017-1023. doi: 10.7498/aps.33.1017
    [20] XIU SHANG-DA, HUANG FU-HUA, XU PENG-SHOU. CALCULATION FOR THE SPLITTING CHAIN OF CRYSTAL-FIELD ENERGY LEVELS OF Pr3+-DOPED LiYF4 CRYSTAL. Acta Physica Sinica, 1984, 33(8): 1160-1166. doi: 10.7498/aps.33.1160
Metrics
  • Abstract views:  7763
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  12 November 2018
  • Accepted Date:  17 December 2018
  • Available Online:  01 March 2019
  • Published Online:  05 March 2019

/

返回文章
返回