Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure

Chen Lu Chen Yue-Gang

Citation:

Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure

Chen Lu, Chen Yue-Gang
PDF
HTML
Get Citation
  • Control of surface plasmon polaritons’ (SPPs’) propagation is of great importance. The groove structure in metal surface, designed by the surface electromagnetic wave holography (SWH) method, can control the SPPs’ propagation effectively. In the SWH method, all designed groove structures are etched in metal surface. The fabrication method is confined to the etching method, such as the focused ion beam lithography and electron beam lithography. And the designed structures cannot implement the real-time control of SPP propagation. We propose a new method to control SPPs’ propagation through metal-photorefractive material composite holographical (MPRCH) structures. A photorefractive material film is coated on the metal surface, and the reference SPP wave interferes with the object SPP wave in the photorefractive material film. The interference intensity is recorded by the photorefractive material film, forming the MPRCH structure. The MPRCH structure is used to control the propagation of relatively weak SPP waves. The finite difference time domain method is used to verify the method. We simulate that a reconstructed SPP wave is incident into the structure region and interacts with the structure. The incident wave is reflected and scattered by the designed MPRCH structure. These reflected and scattered wave are propagated and superposed, forming the desired SPP wave on the metal surface. Simulation results show that the MPRCH structure can control SPPs’ propagation effectively and realize the functions such as SPP wave aside single-point focusing, two-point focusing, generating zero-order and first-order Gaussian SPP beams. It is found that the optimal thickness of the MPRCH film is $3.3\;{\text{μ}}{\rm{m}}$ and modulation amplitude of refractive index is 0.06. This method extends the SPP device fabrication methods, and gets rid of the etching method. Based on the investigation, the real-time controlling of SPP wave may be realized through the MPRCH structure. The study provides a new idea for realizing the all-optical control of SPP propagation, thus making it possible to implement the all-optical control of SPP and further switch.
      Corresponding author: Chen Yue-Gang, yg_chenyg@sina.com
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 11764006).
    [1]

    Wood R W 1902 Philos. Mag. 18 296

    [2]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [3]

    Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B 54 3Google Scholar

    [4]

    冯李航, 曾捷, 梁大开, 张为公 2013 物理学报 62 124207Google Scholar

    Feng L H, Zeng J, Liang D K, Zhang W G 2013 Acta Phys. Sin. 62 124207Google Scholar

    [5]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508Google Scholar

    [6]

    Csaki A, Garwe F, Steinbruck A, Maubach G, Festag G, Weise A 2007 Nano Lett. 7 247Google Scholar

    [7]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [8]

    Bergman D J, Stockman M I 2003 Phys. Rev. Lett. 90 027402Google Scholar

    [9]

    Bozhevolnyi S I, Volkov V S, Devaux E, Ebbesen T W 2005 Phys. Rev. Lett. 95 046802Google Scholar

    [10]

    郭亚楠, 薛文瑞, 张文梅 2009 物理学报 58 4168Google Scholar

    Guo Y N, Xue Y N, Zhang W M 2009 Acta Phys. Sin. 58 4168Google Scholar

    [11]

    Lu C C, Liu Y C, Hu X Y, Yang H, Gong Q H 2016 Sci. Rep. 6 27428Google Scholar

    [12]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martìn-Moreno L, Garcìa-Vidal F J, Ebbesen T W 2002 Science 297 820Google Scholar

    [13]

    Yin L, Vlasko-Vlasov V K, Pearson J, Hiller J M, Hua J, Welp U, Brown D E, Kimball C W 2005 Nano Lett. 5 1399Google Scholar

    [14]

    张国浩, 陈跃刚 2015 光学学报 35 1113003

    Zhang G H, Chen Y G 2015 Acta Opt. Sin. 35 1113003

    [15]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804Google Scholar

    [16]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2013 Phys. Rev. Lett. 110 046807Google Scholar

    [17]

    Li L, Li T, Tang X M, Wang S M, Wang Q J, Zhu S N 2015 Light: Sci. Appl. 4 e330Google Scholar

    [18]

    Tanemura T, Balram K C, Ly-Gagnon D S, Wahl P, White J S, Brongersma M L, Miller D A 2011 Nano Lett. 11 2693Google Scholar

    [19]

    Wang B, Wu X, Zhang Y 2013 Plasmonics 8 1535Google Scholar

    [20]

    Drezet A, Koller D, Hohenau A, Leitner A, Aussenegg F R, Krenn J R 2007 Nano Lett. 7 1697Google Scholar

    [21]

    Abbott S B, Daly K R, D'Alessandro G, Kaczmarek M, Smith D C 2012 J. Opt. Soc. Am. B 29 1947Google Scholar

    [22]

    Stephen B A, Keith R. Daly, Giampaolo D'Alessandro, Kaczmarek M, Smith D C 2012 Opt. Lett. 37 2436Google Scholar

    [23]

    Chen Y H, Fu J X, Li Z Y 2011 Opt. Express 19 23908Google Scholar

    [24]

    Chen Y H, Zhang M Q, Gan L, Wu X Y, Sun L, Liu J, Wang J, Li Z Y 2013 Opt. Express 21 17558Google Scholar

    [25]

    Chen Y H, Huang L, Gan L, Li Z Y 2012 Light: Sci. Appl. 1 e26Google Scholar

    [26]

    Chen Y G, Chen Y H, Li Z Y 2014 Opt. Lett. 39 339Google Scholar

    [27]

    Chen Y G, Yang F Y, Liu J, Li Z Y 2014 Opt. Express 22 14727Google Scholar

    [28]

    Chen Y G, Wang Y, Li Z Y 2014 Plasmonics 9 1057Google Scholar

    [29]

    Liu J, Chen Y G, Gan L, Xiao T H, Li Z Y 2016 Sci. Rep. 6 27565Google Scholar

    [30]

    Chen Y G, Li Z Y 2015 Chin. Opt. lett. 13 020501Google Scholar

    [31]

    Ashkin A, Boyd G D, Dziedzic J M 1966 Appl. Phys. Lett. 9 72Google Scholar

    [32]

    Akella A, Sochava S L, Hesselink L 1997 Opt. Lett. 22 919Google Scholar

    [33]

    陶世荃, 江竹青, 万玉红, 王大勇, 王云新 2013 光学体全息技术及应用 (北京: 科学出版社) 第23页

    Tao S Q, Jiang Z Q, Wan Y H, Wang D Y, Wang Y X 2013 Optical Volume Holography and its Applications (Beijing: Science Press) p23 (in Chinese)

  • 图 1  金属-光折变材料复合全息原理示意图 (a)写入过程; (b)读出过程

    Figure 1.  Schematic of metal-photorefractive material complex holography: (a) Writing process; (b) reading process

    图 2  全息图设计 (a)汇聚SPP波于1个点$O{\rm{(}}8\;{\text{μ}}{\rm{m}},0{\rm{)}}$; (b)汇聚SPP波于2个点${O_1}{\rm{(}}8\;{\text{μ}}{\rm{m}}, - 2\;{\text{μ}}{\rm{m}})$${O_2}{\rm{(}}8\;{\text{μ}}{\rm{m}},$$2\;{\text{μ}}{\rm{m}})$

    Figure 2.  Designing the photorefractive holograms: (a) Focusing SPP at one point $O{\rm{(}}8\;{\text{μ}}{\rm{m}},0{\rm{)}}$; (b) focusing SPP at two points ${O_1}{\rm{(8\;{\text{μ}}{\rm{m}}, -2\;{\text{μ}}{\rm{m}})}}$ and ${O_2}{\rm{(8\;{\text{μ}}{\rm{m}},2\;{\text{μ}}{\rm{m}})}}$

    图 3  光折变材料汇聚平面SPP波到1个点和2个点的模拟结果 (a)汇聚到1个点时xy平面的光强分布; (b)汇聚到2个点时xy平面的光强分布; (c)汇聚到1个点时焦面yz平面的光强分布; (d)汇聚到2个点时焦面yz平面的光强分布; (e)材料厚度对1个点汇聚耦合效率的影响; (f)材料厚度对2个点汇聚耦合效率的影响; (g)折射率调制度对1个点汇聚耦合效率的影响; (h)折射率调制度对2个点汇聚耦合效率的影响; (i)全息图尺度对2个点汇聚耦合效率的影响

    Figure 3.  Simulation results of coupling SPP wave to a point and two points by metal-photorefractive material complex holography structures: (a) Intensity distribution in the xy plane for focusing SPP to a point; (b) intensity distribution in the xy plane for focusing SPP to two points; (c) intensity distribution in the yz plane for focusing SPP to a point; (d) intensity distribution in the yz plane for focusing SPP to two points; (e) influence of material thickness on coupling efficiency for focusing SPP to a point; (f) influences of material thickness on coupling efficiency for focusing SPP to two points; (g) influence of refractive modulation on coupling efficiency for focusing SPP to a point; (h) influence of refractive modulation on coupling efficiency for focusing SPP to two points; (i) influence of hologram dimension on coupling efficiency for focusing SPP to two points

    图 4  零阶高斯SPP波束的生成, 其中图(a)和(b)为物波波面分布、物波和参考光波干涉产生的光强分布; 全息图读出的模拟结果, 包括xy平面的(c)光强分布和(d)波阵面分布, (e) SPP高斯波束束腰处光强分布, (f)折射率调制度对耦合效率的影响

    Figure 4.  Generation of Gaussian zero-order SPP beam in writing process: (a) Object SPP wavefront; (b) interference intensity distribution between object wave and reference wave. Simulation results of reading process: (c) intensity and (d) wavefront distribution in xy plane; (e) intensity distribution on waist for theory and simulation; (f) influence of refractive modulation on coupling efficiency

    图 5  1阶高斯SPP波束的生成, 其中图(a)和(b)为物波波面分布、物波和参考光波干涉产生光强分布; 读出过程的模拟结果, 包括xy平面内(c)光强分布和(d)波阵面分布, (e) x = 0处yz截面内光强分布, (f)理论和模拟的1阶SPP高斯波束束腰处光强分布

    Figure 5.  Generation of Gaussian first-order SPP beam in writing process: (a) Object SPP wavefront; (b) interference intensity distribution between object wave and reference wave. Simulation results of reading process: (c) intensity and (d) wavefront distribution in xy plane; (e) intensity distribution on yz plane with x = 0; (f) intensity distribution on waist for theory and simulation

  • [1]

    Wood R W 1902 Philos. Mag. 18 296

    [2]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [3]

    Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B 54 3Google Scholar

    [4]

    冯李航, 曾捷, 梁大开, 张为公 2013 物理学报 62 124207Google Scholar

    Feng L H, Zeng J, Liang D K, Zhang W G 2013 Acta Phys. Sin. 62 124207Google Scholar

    [5]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508Google Scholar

    [6]

    Csaki A, Garwe F, Steinbruck A, Maubach G, Festag G, Weise A 2007 Nano Lett. 7 247Google Scholar

    [7]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [8]

    Bergman D J, Stockman M I 2003 Phys. Rev. Lett. 90 027402Google Scholar

    [9]

    Bozhevolnyi S I, Volkov V S, Devaux E, Ebbesen T W 2005 Phys. Rev. Lett. 95 046802Google Scholar

    [10]

    郭亚楠, 薛文瑞, 张文梅 2009 物理学报 58 4168Google Scholar

    Guo Y N, Xue Y N, Zhang W M 2009 Acta Phys. Sin. 58 4168Google Scholar

    [11]

    Lu C C, Liu Y C, Hu X Y, Yang H, Gong Q H 2016 Sci. Rep. 6 27428Google Scholar

    [12]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martìn-Moreno L, Garcìa-Vidal F J, Ebbesen T W 2002 Science 297 820Google Scholar

    [13]

    Yin L, Vlasko-Vlasov V K, Pearson J, Hiller J M, Hua J, Welp U, Brown D E, Kimball C W 2005 Nano Lett. 5 1399Google Scholar

    [14]

    张国浩, 陈跃刚 2015 光学学报 35 1113003

    Zhang G H, Chen Y G 2015 Acta Opt. Sin. 35 1113003

    [15]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804Google Scholar

    [16]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2013 Phys. Rev. Lett. 110 046807Google Scholar

    [17]

    Li L, Li T, Tang X M, Wang S M, Wang Q J, Zhu S N 2015 Light: Sci. Appl. 4 e330Google Scholar

    [18]

    Tanemura T, Balram K C, Ly-Gagnon D S, Wahl P, White J S, Brongersma M L, Miller D A 2011 Nano Lett. 11 2693Google Scholar

    [19]

    Wang B, Wu X, Zhang Y 2013 Plasmonics 8 1535Google Scholar

    [20]

    Drezet A, Koller D, Hohenau A, Leitner A, Aussenegg F R, Krenn J R 2007 Nano Lett. 7 1697Google Scholar

    [21]

    Abbott S B, Daly K R, D'Alessandro G, Kaczmarek M, Smith D C 2012 J. Opt. Soc. Am. B 29 1947Google Scholar

    [22]

    Stephen B A, Keith R. Daly, Giampaolo D'Alessandro, Kaczmarek M, Smith D C 2012 Opt. Lett. 37 2436Google Scholar

    [23]

    Chen Y H, Fu J X, Li Z Y 2011 Opt. Express 19 23908Google Scholar

    [24]

    Chen Y H, Zhang M Q, Gan L, Wu X Y, Sun L, Liu J, Wang J, Li Z Y 2013 Opt. Express 21 17558Google Scholar

    [25]

    Chen Y H, Huang L, Gan L, Li Z Y 2012 Light: Sci. Appl. 1 e26Google Scholar

    [26]

    Chen Y G, Chen Y H, Li Z Y 2014 Opt. Lett. 39 339Google Scholar

    [27]

    Chen Y G, Yang F Y, Liu J, Li Z Y 2014 Opt. Express 22 14727Google Scholar

    [28]

    Chen Y G, Wang Y, Li Z Y 2014 Plasmonics 9 1057Google Scholar

    [29]

    Liu J, Chen Y G, Gan L, Xiao T H, Li Z Y 2016 Sci. Rep. 6 27565Google Scholar

    [30]

    Chen Y G, Li Z Y 2015 Chin. Opt. lett. 13 020501Google Scholar

    [31]

    Ashkin A, Boyd G D, Dziedzic J M 1966 Appl. Phys. Lett. 9 72Google Scholar

    [32]

    Akella A, Sochava S L, Hesselink L 1997 Opt. Lett. 22 919Google Scholar

    [33]

    陶世荃, 江竹青, 万玉红, 王大勇, 王云新 2013 光学体全息技术及应用 (北京: 科学出版社) 第23页

    Tao S Q, Jiang Z Q, Wan Y H, Wang D Y, Wang Y X 2013 Optical Volume Holography and its Applications (Beijing: Science Press) p23 (in Chinese)

  • [1] Zhang Cai-Xia, Ma Xiang-Chao, Zhang Jian-Qi. Theoretical study on surface plasmon and hot carrier transport properties of Au(111) films. Acta Physica Sinica, 2022, 71(22): 227801. doi: 10.7498/aps.71.20221166
    [2] Liu Liang, Han De-Zhuan, Shi Lei. Plasmonic band structures and its applications. Acta Physica Sinica, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [3] Chu Pei-Xin, Zhang Yu-Bin, Chen Jun-Xue. Surface plasmon induced transparency in coupled microcavities assisted by slits. Acta Physica Sinica, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [4] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [5] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [6] Wu Li-Xiang, Li Xin, Yang Yuan-Jie. Generation of surface plasmon vortices based on double-layer Archimedes spirals. Acta Physica Sinica, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [7] Yu Hua-Kang, Liu Bo-Dong, Wu Wan-Ling, Li Zhi-Yuan. Surface plasmaons enhanced light-matter interactions. Acta Physica Sinica, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [8] Zhang Bao-Bao, Zhang Cheng-Yun, Zhang Zheng-Long, Zheng Hai-Rong. Surface plasmon mediated chemical reaction. Acta Physica Sinica, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [9] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [10] Zhang Wen-Jun, Gao Long, Wei Hong, Xu Hong-Xing. Modulation of propagating surface plasmons. Acta Physica Sinica, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [11] Zhou Qiang, Lin Shu-Pei, Zhang Pu, Chen Xue-Wen. Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Acta Physica Sinica, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [12] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [13] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [14] Li Ming, Chen Yang, Guo Guang-Can, Ren Xi-Feng. Recent progress of the application of surface plasmon polariton in quantum information processing. Acta Physica Sinica, 2017, 66(14): 144202. doi: 10.7498/aps.66.144202
    [15] Jiang Mei-Ling, Zheng Li-Heng, Chi Cheng, Zhu Xing, Fang Zhe-Yu. Research progress of plasmonic cathodoluminesecence characterization. Acta Physica Sinica, 2017, 66(14): 144201. doi: 10.7498/aps.66.144201
    [16] Zhang Chong-Lei, Xin Zi-Qiang, Min Chang-Jun, Yuan Xiao-Cong. Research progress of plasmonic structure illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [17] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [19] Hu Meng-Zhu, Zhou Si-Yang, Han Qin, Sun Hua, Zhou Li-Ping, Zeng Chun-Mei, Wu Zhao-Feng, Wu Xue-Mei. Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguides. Acta Physica Sinica, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [20] Han Qing-Yao, Tang Jun-Chao, Zhang Chao, Wang Chuan, Ma Hai-Qiang, Yu Li, Jiao Rong-Zhen. The effects of local density of states on surface plasmon polaritons. Acta Physica Sinica, 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
Metrics
  • Abstract views:  6265
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  06 September 2018
  • Accepted Date:  27 December 2018
  • Available Online:  01 March 2019
  • Published Online:  20 March 2019

/

返回文章
返回